Display options
Share it on

Cancers (Basel). 2019 Aug 14;11(8). doi: 10.3390/cancers11081175.

Multi-Drug/Gene NASH Therapy Delivery and Selective Hyperspectral NIR Imaging Using Chirality-Sorted Single-Walled Carbon Nanotubes.

Cancers

Md Tanvir Hasan, Elizabeth Campbell, Olga Sizova, Veronica Lyle, Giridhar Akkaraju, D Lynn Kirkpatrick, Anton V Naumov

Affiliations

  1. Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA.
  2. The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
  3. Department of Biology, Texas Christian University, 2955 South University Drive, Fort Worth, TX 76129, USA.
  4. Ensysce Biosciences, 3210 Merryfield Row, San Diego, CA 92121, USA.
  5. Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA. [email protected].

PMID: 31416250 PMCID: PMC6721580 DOI: 10.3390/cancers11081175

Abstract

Single-walled carbon nanotubes (SWCNTs) can serve as drug delivery/biological imaging agents, as they exhibit intrinsic fluorescence in the near-infrared, allowing for deeper tissue imaging while providing therapeutic transport. In this work, CoMoCAT (Cobalt Molybdenum Catalyst) SWCNTs, chirality-sorted by aqueous two-phase extraction, are utilized for the first time to deliver a drug/gene combination therapy and image each therapeutic component separately via chirality-specific SWCNT fluorescence. Each of (7,5) and (7,6) sorted SWCNTs were non-covalently loaded with their specific payload: the PI3 kinase inhibitor targeting liver fibrosis or CCR5 siRNA targeting inflammatory pathways with the goal of addressing these processes in nonalcoholic steatohepatitis (NASH), ultimately to prevent its progression to hepatocellular carcinoma. PX-866-(7,5) SWCNTs and siRNA-(7,6) SWCNTs were each imaged via characteristic SWCNT emission at 1024/1120 nm in HepG2 and HeLa cells by hyperspectral fluorescence microscopy. Wavelength-resolved imaging verified the intracellular transport of each SWCNT chirality and drug release. The therapeutic efficacy of each formulation was further demonstrated by the dose-dependent cytotoxicity of SWCNT-bound PX-866 and >90% knockdown of CCR5 expression with SWCNT/siRNA transfection. This study verifies the feasibility of utilizing chirality-sorted SWCNTs for the delivery and component-specific imaging of combination therapies, also suggesting a novel nanotherapeutic approach for addressing the progressions of NASH to hepatocellular carcinoma.

Keywords: NASH; chirality separation; drug-gene delivery; near IR hyperspectral imaging; single-walled carbon nanotubes

References

  1. Int J Radiat Oncol Biol Phys. 2001 Nov 1;51(3):666-70 - PubMed
  2. J Clin Oncol. 2002 Jun 15;20(12):2812-23 - PubMed
  3. Lancet. 2002 Jun 22;359(9324):2131-9 - PubMed
  4. Science. 2002 Dec 20;298(5602):2361-6 - PubMed
  5. JAMA. 1960 Nov 5;174:1291-9 - PubMed
  6. Chem Commun (Camb). 2004 Jan 7;(1):16-7 - PubMed
  7. Cell Immunol. 2003 Nov;226(1):45-53 - PubMed
  8. Biomed Pharmacother. 2004 Apr;58(3):173-82 - PubMed
  9. Angew Chem Int Ed Engl. 2004 Oct 4;43(39):5242-6 - PubMed
  10. Nat Mater. 2005 Jan;4(1):86-92 - PubMed
  11. J Am Chem Soc. 2005 Sep 14;127(36):12492-3 - PubMed
  12. Curr Opin Chem Biol. 2005 Dec;9(6):674-9 - PubMed
  13. Angew Chem Int Ed Engl. 2006 Jan 16;45(4):577-81 - PubMed
  14. Expert Opin Drug Deliv. 2006 Mar;3(2):205-16 - PubMed
  15. J Phys Chem B. 2005 May 26;109(20):9952-65 - PubMed
  16. Biomaterials. 2007 Feb;28(5):869-76 - PubMed
  17. Angew Chem Int Ed Engl. 2007;46(12):2023-7 - PubMed
  18. Hepatology. 2007 Mar;45(3):817-25 - PubMed
  19. Nano Lett. 2007 Oct;7(10):3065-70 - PubMed
  20. Nat Nanotechnol. 2006 Oct;1(1):60-5 - PubMed
  21. Nat Nanotechnol. 2008 Sep;3(9):557-62 - PubMed
  22. Arch Pathol Lab Med. 2008 Nov;132(11):1761-6 - PubMed
  23. ACS Nano. 2007 Aug;1(1):50-6 - PubMed
  24. ACS Nano. 2008 Oct 28;2(10):2023-8 - PubMed
  25. ACS Nano. 2008 Oct 28;2(10):2085-94 - PubMed
  26. ACS Nano. 2009 Feb 24;3(2):307-16 - PubMed
  27. Mol Pharm. 2009 May-Jun;6(3):763-71 - PubMed
  28. Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6111-6 - PubMed
  29. J Clin Invest. 2009 Jul;119(7):1858-70 - PubMed
  30. Med Oncol. 2010 Sep;27(3):843-52 - PubMed
  31. Angew Chem Int Ed Engl. 2009;48(41):7668-72 - PubMed
  32. Arthritis Rheum. 2009 Oct;60(10):2945-53 - PubMed
  33. Am J Pathol. 2010 Feb;176(2):679-86 - PubMed
  34. Nano Res. 2009 Apr 17;2(4):279-291 - PubMed
  35. Acta Biochim Biophys Sin (Shanghai). 2010 Feb;42(2):137-44 - PubMed
  36. Nano Res. 2009 Feb 1;2(2):85-120 - PubMed
  37. Hepatology. 2010 May;51(5):1820-32 - PubMed
  38. ACS Nano. 2010 Jul 27;4(7):3689-96 - PubMed
  39. Lancet. 2010 Aug 28;376(9742):687-97 - PubMed
  40. FASEB J. 2011 Feb;25(2):737-53 - PubMed
  41. Am J Physiol Gastrointest Liver Physiol. 2011 May;300(5):G709-15 - PubMed
  42. Nat Commun. 2011;2:309 - PubMed
  43. Proc Natl Acad Sci U S A. 2011 May 31;108(22):8943-8 - PubMed
  44. Nanotechnology. 2011 Jul 22;22(29):295712 - PubMed
  45. Annu Rev Med. 2012;63:185-98 - PubMed
  46. J Colloid Interface Sci. 2012 Jan 1;365(1):143-9 - PubMed
  47. J Hepatol. 2012 Mar;56(3):704-13 - PubMed
  48. Nat Commun. 2012 Feb 28;3:700 - PubMed
  49. Biomaterials. 2013 Mar;34(10):2472-9 - PubMed
  50. Mol Ther Nucleic Acids. 2013 Jul 30;2:e110 - PubMed
  51. Nat Mater. 2013 Nov;12(11):967-77 - PubMed
  52. Biomaterials. 2014 Mar;35(9):3121-31 - PubMed
  53. Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):E3553-61 - PubMed
  54. Neuro Oncol. 2015 Sep;17(9):1270-4 - PubMed
  55. Expert Opin Drug Deliv. 2015 Jul;12(7):1089-105 - PubMed
  56. ACS Nano. 2015 May 26;9(5):5377-90 - PubMed
  57. J Phys Chem C Nanomater Interfaces. 2015 May 7;119(18):10048-10058 - PubMed
  58. Sci Rep. 2015 Sep 21;5:14167 - PubMed
  59. Methods Mol Biol. 2016;1364:151-63 - PubMed
  60. Front Pharmacol. 2015 Dec 01;6:286 - PubMed
  61. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4164-9 - PubMed
  62. J Pharm Sci. 2016 Sep;105(9):2815-2824 - PubMed
  63. Biomaterials. 2016 Sep;101:229-40 - PubMed
  64. ACS Appl Mater Interfaces. 2016 Aug 31;8(34):22442-50 - PubMed
  65. Int J Environ Res Public Health. 2016 Dec 24;14(1): - PubMed
  66. Int J Pharm. 2017 Feb 25;518(1-2):185-192 - PubMed
  67. ACS Appl Mater Interfaces. 2017 Mar 22;9(11):9348-9358 - PubMed
  68. Genes (Basel). 2017 Mar 02;8(3): - PubMed
  69. Materials (Basel). 2012 Feb 13;5(2):278-301 - PubMed
  70. Langmuir. 2019 Jan 22;35(3):831-837 - PubMed
  71. Ann Intern Med. 1977 Sep;87(3):293-8 - PubMed

Publication Types

Grant support