Display options
Share it on

Front Cell Neurosci. 2019 Jul 30;13:336. doi: 10.3389/fncel.2019.00336. eCollection 2019.

Distinct Vulnerability and Resilience of Human Neuroprogenitor Subtypes in Cerebral Organoid Model of Prenatal Hypoxic Injury.

Frontiers in cellular neuroscience

Nicolas Daviaud, Clément Chevalier, Roland H Friedel, Hongyan Zou

Affiliations

  1. Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States.
  2. The Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Brussels, Belgium.
  3. Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States.

PMID: 31417360 PMCID: PMC6682705 DOI: 10.3389/fncel.2019.00336

Abstract

Prenatal hypoxic injury (HI) is a leading cause of neurological disability. The immediate and long-term effects of hypoxia on progenitor homeostasis and developmental progression during early human brain development remain unclear. This gap is due to difficulty to access human fetal brain tissues and inadequate animal models to study human corticogenesis. Recent optimizations of cerebral organoid models derived from human embryonic stem (ES) cells present new opportunities to investigate pathophysiology of prenatal HI. Here, we implemented a transient HI model using human cerebral organoids with dorsal forebrain specification. We demonstrated that transient hypoxia resulted in immediate and prolonged apoptosis in cerebral organoids, with outer radial glia (oRG), a progenitor population more prominent in primates, and differentiating neuroblasts/immature neurons suffering larger losses. In contrast, neural stem cells in ventricular zone displayed relative resilience to HI and exhibited a shift of cleavage plane angle favoring symmetric division, thereby providing a mechanism to replenish the stem cell pool. Furthermore, we defined the vulnerable window and neurodifferentiation stages that are particularly sensitive to HI. Understanding cell type-specific and stage-dependent effects of prenatal HI on survival and mitotic behavior of human neuroprogenitor subtypes during early human corticogenesis helps elucidate the etiology of neurodevelopmental disorders, and provides a therapeutic starting point to protect the vulnerable populations at critical timeframes.

Keywords: cerebral organoids; human corticogenesis; neural stem cell; neuroprogenitor; outer radial glia; prenatal hypoxic injury

References

  1. Nature. 1999 May 20;399(6733):271-5 - PubMed
  2. Cereb Cortex. 2002 Jan;12(1):37-53 - PubMed
  3. J Neurosci. 2004 Jun 23;24(25):5810-5 - PubMed
  4. J Cereb Blood Flow Metab. 2004 Jul;24(7):814-25 - PubMed
  5. Neuron. 2005 Aug 4;47(3):353-64 - PubMed
  6. Neuron. 2005 Sep 15;47(6):817-31 - PubMed
  7. Neurosci Res. 2006 Jul;55(3):223-33 - PubMed
  8. J Neurosci. 2006 Apr 19;26(16):4359-69 - PubMed
  9. J Perinat Neonatal Nurs. 2006 Apr-Jun;20(2):163-75; quiz 176-7 - PubMed
  10. Neurotox Res. 2007 Jul;12(1):81-4 - PubMed
  11. Curr Treat Options Neurol. 2007 Nov;9(6):414-23 - PubMed
  12. Anesth Analg. 2009 Jul;109(1):205-10 - PubMed
  13. Clin Perinatol. 2009 Sep;36(3):579-93 - PubMed
  14. Nature. 2010 Mar 25;464(7288):554-561 - PubMed
  15. Nat Neurosci. 2010 Jun;13(6):690-9 - PubMed
  16. Cell Mol Life Sci. 2011 Sep;68(17):2831-44 - PubMed
  17. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  18. Front Hum Neurosci. 2013 Aug 01;7:424 - PubMed
  19. Nature. 2013 Sep 19;501(7467):373-9 - PubMed
  20. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20284-9 - PubMed
  21. Nat Neurosci. 2014 Mar;17(3):341-6 - PubMed
  22. Nat Protoc. 2014 Oct;9(10):2329-40 - PubMed
  23. Cell Rep. 2015 Feb 3;10(4):537-50 - PubMed
  24. Neuron. 2015 Feb 18;85(4):683-94 - PubMed
  25. Nat Methods. 2015 Jul;12(7):671-8 - PubMed
  26. Dev Neurosci. 2015;37(4-5):428-39 - PubMed
  27. Cell. 2015 Sep 24;163(1):55-67 - PubMed
  28. Nat Methods. 2016 Jan;13(1):87-93 - PubMed
  29. Nat Commun. 2015 Nov 17;6:8896 - PubMed
  30. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15672-7 - PubMed
  31. Cell. 2016 May 19;165(5):1238-1254 - PubMed
  32. Cell Rep. 2016 Dec 20;17(12):3369-3384 - PubMed
  33. Cell Stem Cell. 2017 Mar 2;20(3):385-396.e3 - PubMed
  34. Cell Stem Cell. 2017 Apr 6;20(4):435-449.e4 - PubMed
  35. Cell Rep. 2017 Oct 10;21(2):517-532 - PubMed
  36. Transl Psychiatry. 2018 Jan 10;8(1):14 - PubMed
  37. Crit Care Nurs Clin North Am. 2018 Dec;30(4):509-521 - PubMed
  38. eNeuro. 2018 Nov 20;5(6): - PubMed
  39. Nat Med. 2019 May;25(5):784-791 - PubMed
  40. Nature. 2019 Jun;570(7762):523-527 - PubMed
  41. Cell. 1995 Aug 25;82(4):631-41 - PubMed
  42. Pediatr Res. 1993 Jan;33(1):61-5 - PubMed
  43. J Neurosci. 1997 Mar 15;17(6):2018-29 - PubMed

Publication Types

Grant support