Display options
Share it on

J Biomed Sci Eng. 2010 Jan 01;3(1):20-26. doi: 10.4236/jbise.2010.31003.

Applications of a new In vivo tumor spheroid based shell-less chorioallantoic membrane 3-D model in bioengineering research.

Journal of biomedical science and engineering

Nzola De Magalhães, Lih-Huei L Liaw, Michael Berns, Vittorio Cristini, Zhongping Chen, Dwayne Stupack, John Lowengrub

Affiliations

  1. Department of Biomedical Engineering, University of California, Irvine, USA.

PMID: 21243108 PMCID: PMC3019609 DOI: 10.4236/jbise.2010.31003

Abstract

The chicken chorioallantoic membrane (CAM) is a classical in vivo biological model in studies of angiogenesis. Combined with the right tumor system and experimental configuration this classical model can offer new approaches to investigating tumor processes. The increase in development of biotechnological devices for cancer diagnosis and treatment, calls for more sophisticated tumor models that can easily adapt to the technology, and provide a more accurate, stable and consistent platform for rapid quantitative and qualitative analysis. As we discuss a variety of applications of this novel in vivo tumor spheroid based shell-less CAM model in biomedical engineering research, we will show that it is extremely versatile and easily adaptable to an array of biomedical applications. The model is particularly useful in quantitative studies of the progression of avascular tumors into vascularized tumors in the CAM. Its environment is more stable, flat and has a large working area and wider field of view excellent for imaging and longitudinal studies. Finally, rapid data acquisition, screening and validation of biomedical devices and therapeutics are possible with the short experimental window.

References

  1. Anat Rec. 2001 Dec 1;264(4):317-24 - PubMed
  2. Biophys J. 2005 Dec;89(6):3884-94 - PubMed
  3. Clin Transl Oncol. 2008 Feb;10(2):85-95 - PubMed
  4. Poult Sci. 1974 Jan;53(1):409-12 - PubMed
  5. Curr Opin Ophthalmol. 1999 Jun;10(3):182-8 - PubMed
  6. Pathobiology. 1999 May-Jun;67(3):148-57 - PubMed
  7. Opt Express. 2002 Mar 11;10(5):236-45 - PubMed
  8. J Math Biol. 2009 Apr;58(4-5):723-63 - PubMed
  9. Methods Mol Med. 2003;78:311-5 - PubMed
  10. Photochem Photobiol Sci. 2002 Sep;1(9):721-8 - PubMed
  11. Lancet. 1958 Jun 7;1(7032):1188-95 - PubMed
  12. J Math Biol. 2009 Apr;58(4-5):765-98 - PubMed
  13. Cancer Res. 2006 Feb 1;66(3):1597-604 - PubMed
  14. Opt Lett. 2008 Jul 1;33(13):1425-7 - PubMed
  15. J Math Biol. 2009 Apr;58(4-5):485-510 - PubMed
  16. J Theor Biol. 2008 Aug 7;253(3):524-43 - PubMed
  17. Pharmacol Toxicol. 1989 Feb;64(2):193-5 - PubMed
  18. Neuroimage. 2007;37 Suppl 1:S59-70 - PubMed
  19. J Photochem Photobiol B. 1999 Nov-Dec;53(1-3):44-52 - PubMed
  20. Biomed Microdevices. 2004 Dec;6(4):297-309 - PubMed
  21. J Math Biol. 2004 Aug;49(2):111-87 - PubMed
  22. Lasers Surg Med. 2006 Jun;38(5):555-64 - PubMed
  23. Eur J Pharm Biopharm. 2008 May;69(1):43-53 - PubMed
  24. Mol Carcinog. 2007 Oct;46(10):872-85 - PubMed
  25. Opt Lett. 1997 Jul 15;22(14):1119-21 - PubMed
  26. Cancer Res. 2009 May 15;69(10):4493-501 - PubMed
  27. Nat Methods. 2007 Oct;4(10):855-60 - PubMed
  28. Cancer Res. 2009 Mar 1;69(5):1712-6 - PubMed
  29. Methods Enzymol. 2008;443:65-82 - PubMed
  30. Photochem Photobiol. 2000 Jul;72(1):128-34 - PubMed
  31. Methods Mol Biol. 2000;135:39-46 - PubMed
  32. Hum Cell. 1999 Mar;12(1):37-46 - PubMed
  33. Dermatology. 1999;198(4):355-61 - PubMed
  34. Adv Drug Deliv Rev. 2007 Sep 30;59(11):1162-76 - PubMed
  35. Microcirculation. 2008 Jan;15(1):65-79 - PubMed
  36. Int J Exp Pathol. 2005 Dec;86(6):365-74 - PubMed
  37. J Theor Biol. 2007 Apr 21;245(4):677-704 - PubMed

Publication Types

Grant support