Display options
Share it on

Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4822-7. doi: 10.1073/pnas.1004646108. Epub 2011 Mar 02.

Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments.

Proceedings of the National Academy of Sciences of the United States of America

Frank Noé, Sören Doose, Isabella Daidone, Marc Löllmann, Markus Sauer, John D Chodera, Jeremy C Smith

Affiliations

  1. Research Center Matheon, FU Berlin, Arnimallee 6, 14159 Berlin, Germany. [email protected]

PMID: 21368203 PMCID: PMC3064371 DOI: 10.1073/pnas.1004646108

Abstract

There is a gap between kinetic experiment and simulation in their views of the dynamics of complex biomolecular systems. Whereas experiments typically reveal only a few readily discernible exponential relaxations, simulations often indicate complex multistate behavior. Here, a theoretical framework is presented that reconciles these two approaches. The central concept is "dynamical fingerprints" which contain peaks at the time scales of the dynamical processes involved with amplitudes determined by the experimental observable. Fingerprints can be generated from both experimental and simulation data, and their comparison by matching peaks permits assignment of structural changes present in the simulation to experimentally observed relaxation processes. The approach is applied here to a test case interpreting single molecule fluorescence correlation spectroscopy experiments on a set of fluorescent peptides with molecular dynamics simulations. The peptides exhibit complex kinetics shown to be consistent with the apparent simplicity of the experimental data. Moreover, the fingerprint approach can be used to design new experiments with site-specific labels that optimally probe specific dynamical processes in the molecule under investigation.

References

  1. J Am Chem Soc. 2010 Feb 10;132(5):1526-8 - PubMed
  2. J Am Chem Soc. 2002 Jan 30;124(4):556-64 - PubMed
  3. J Phys Chem B. 2008 May 15;112(19):6057-69 - PubMed
  4. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4284-9 - PubMed
  5. PLoS Comput Biol. 2010 Jan 22;6(1):e1000645 - PubMed
  6. J Mol Biol. 2003 Sep 5;332(1):265-74 - PubMed
  7. J Chem Phys. 2007 Apr 21;126(15):155102 - PubMed
  8. Nat Methods. 2009 Jul;6(7):515-9 - PubMed
  9. J Chem Phys. 2004 Oct 1;121(13):6361-72 - PubMed
  10. Biophys J. 2002 Apr;82(4):2244-55 - PubMed
  11. J Mol Biol. 2001 Aug 10;311(2):373-93 - PubMed
  12. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5129-34 - PubMed
  13. Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10648-53 - PubMed
  14. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12117-22 - PubMed
  15. Proteins. 2007 Mar 1;66(4):877-88 - PubMed
  16. Proteins. 2008 Mar;70(4):1185-95 - PubMed
  17. Biophys J. 2000 Mar;78(3):1589-98 - PubMed
  18. Curr Opin Struct Biol. 2004 Feb;14(1):70-5 - PubMed
  19. Phys Rev Lett. 2005 May 20;94(19):198302 - PubMed
  20. J Chem Phys. 2007 Apr 21;126(15):155101 - PubMed
  21. Proc Natl Acad Sci U S A. 1986 Feb;83(4):848-51 - PubMed
  22. J Chem Phys. 2009 Sep 28;131(12):124101 - PubMed
  23. J Mol Biol. 2007 Jan 19;365(3):856-69 - PubMed
  24. Science. 1991 Dec 13;254(5038):1598-603 - PubMed
  25. Chem Rev. 2006 May;106(5):1785-813 - PubMed
  26. Chemphyschem. 2009 Jul 13;10(9-10):1389-98 - PubMed
  27. Nature. 1989 Feb 23;337(6209):754-6 - PubMed
  28. Curr Opin Struct Biol. 2008 Apr;18(2):154-62 - PubMed
  29. Nature. 2000 Mar 9;404(6774):205-8 - PubMed
  30. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19011-6 - PubMed
  31. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7220-5 - PubMed
  32. J Phys Chem B. 2008 May 15;112(19):6137-46 - PubMed
  33. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1779-84 - PubMed

MeSH terms

Publication Types