Display options
Share it on

Fluids Barriers CNS. 2011 Jan 18;8(1):4. doi: 10.1186/2045-8118-8-4.

Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle.

Fluids and barriers of the CNS

Britta Engelhardt, Caroline Coisne

Affiliations

  1. Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland. [email protected].

PMID: 21349152 PMCID: PMC3039833 DOI: 10.1186/2045-8118-8-4

Abstract

Neuronal activity within the central nervous system (CNS) strictly depends on homeostasis and therefore does not tolerate uncontrolled entry of blood components. It has been generally believed that under normal conditions, the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) prevent immune cell entry into the CNS. This view has recently changed when it was realized that activated T cells are able to breach the BBB and the BCSFB to perform immune surveillance of the CNS. Here we propose that the immune privilege of the CNS is established by the specific morphological architecture of its borders resembling that of a medieval castle. The BBB and the BCSFB serve as the outer walls of the castle, which can be breached by activated immune cells serving as messengers for outside dangers. Having crossed the BBB or the BCSFB they reach the castle moat, namely the cerebrospinal fluid (CSF)-drained leptomeningeal and perivascular spaces of the CNS. Next to the CNS parenchyma, the castle moat is bordered by a second wall, the glia limitans, composed of astrocytic foot processes and a parenchymal basement membrane. Inside the castle, that is the CNS parenchyma proper, the royal family of sensitive neurons resides with their servants, the glial cells. Within the CSF-drained castle moat, macrophages serve as guards collecting all the information from within the castle, which they can present to the immune-surveying T cells. If in their communication with the castle moat macrophages, T cells recognize their specific antigen and see that the royal family is in danger, they will become activated and by opening doors in the outer wall of the castle allow the entry of additional immune cells into the castle moat. From there, immune cells may breach the inner castle wall with the aim to defend the castle inhabitants by eliminating the invading enemy. If the immune response by unknown mechanisms turns against self, that is the castle inhabitants, this may allow for continuous entry of immune cells into the castle and lead to the death of the castle inhabitants, and finally members of the royal family, the neurons. This review will summarize the molecular traffic signals known to allow immune cells to breach the outer and inner walls of the CNS castle moat and will highlight the importance of the CSF-drained castle moat in maintaining immune surveillance and in mounting immune responses in the CNS.

References

  1. Cell. 1993 Aug 13;74(3):541-54 - PubMed
  2. Drug Discov Today. 2007 Jan;12(1-2):54-61 - PubMed
  3. Lab Invest. 1990 Oct;63(4):476-89 - PubMed
  4. J Neuroimmunol. 1995 Apr;58(1):1-10 - PubMed
  5. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1920-5 - PubMed
  6. J Neuroimmunol. 2011 Mar;232(1-2):207-8 - PubMed
  7. J Clin Invest. 2001 Aug;108(4):557-65 - PubMed
  8. Am J Pathol. 1996 Jun;148(6):1819-38 - PubMed
  9. Am J Pathol. 1994 Jul;145(1):189-201 - PubMed
  10. Eur J Immunol. 2002 Dec;32(12):3598-606 - PubMed
  11. Eur J Immunol. 2002 Aug;32(8):2133-44 - PubMed
  12. J Neuroimmunol. 2007 Oct;190(1-2):72-9 - PubMed
  13. Neurobiol Dis. 2010 Jan;37(1):13-25 - PubMed
  14. Br J Exp Pathol. 1948 Feb;29(1):58-69 - PubMed
  15. Glia. 2010 Jan 1;58(1):1-10 - PubMed
  16. Adv Immunol. 1977;25:1-54 - PubMed
  17. J Immunol. 2006 May 15;176(10):6225-34 - PubMed
  18. Methods Enzymol. 1997;287:319-48 - PubMed
  19. Ann Neurol. 1995 Apr;37(4):424-35 - PubMed
  20. J Immunol. 2007 Dec 15;179(12):8470-9 - PubMed
  21. Nat Med. 2009 May;15(5):519-27 - PubMed
  22. J Immunol. 2005 Jul 15;175(2):1267-75 - PubMed
  23. Lab Invest. 1990 Aug;63(2):162-70 - PubMed
  24. Lab Invest. 1992 Jul;67(1):42-55 - PubMed
  25. J Cell Biol. 2001 May 28;153(5):933-46 - PubMed
  26. Cell Tissue Res. 1999 May;296(2):259-69 - PubMed
  27. Nat Immunol. 2008 Feb;9(2):137-45 - PubMed
  28. J Immunol. 2002 Jul 15;169(2):1000-6 - PubMed
  29. Nat Immunol. 2009 May;10(5):514-23 - PubMed
  30. J Neuropathol Exp Neurol. 2003 Apr;62(4):412-9 - PubMed
  31. Brain. 2000 Jun;123 ( Pt 6):1092-101 - PubMed
  32. J Neuroimmunol. 2009 May 29;210(1-2):92-9 - PubMed
  33. Neurology. 1996 Oct;47(4):1053-9 - PubMed
  34. Brain Res Brain Res Rev. 1997 Jun;24(1):67-76 - PubMed
  35. Semin Immunopathol. 2009 Nov;31(4):497-511 - PubMed
  36. Acta Neuropathol. 1989;78(4):359-71 - PubMed
  37. J Exp Med. 2006 Apr 17;203(4):1007-19 - PubMed
  38. Brain Pathol. 1991 Jan;1(2):107-14 - PubMed
  39. Microsc Res Tech. 2001 Jan 1;52(1):112-29 - PubMed
  40. Immunology. 1995 Nov;86(3):408-15 - PubMed
  41. Annu Rev Immunol. 2005;23:683-747 - PubMed
  42. Neurodegener Dis. 2008;5(1):16-22 - PubMed
  43. J Immunol. 2007 Jan 15;178(2):851-7 - PubMed
  44. J Neuroimmunol. 2002 Jun;127(1-2):69-79 - PubMed
  45. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8389-94 - PubMed
  46. Am J Pathol. 1990 Jun;136(6):1309-16 - PubMed
  47. J Neuroimmunol. 1993 Jul;46(1-2):43-55 - PubMed
  48. Science. 1997 Jul 11;277(5323):242-5 - PubMed
  49. J Clin Invest. 1998 Dec 15;102(12):2096-105 - PubMed
  50. J Clin Invest. 2002 Feb;109(3):383-92 - PubMed
  51. J Neuroimmunol. 2005 Sep;166(1-2):193-6 - PubMed
  52. Nat Med. 2005 Mar;11(3):328-34 - PubMed
  53. Brain Pathol. 2003 Jan;13(1):38-51 - PubMed
  54. J Neuropathol Exp Neurol. 1996 Oct;55(10):1060-72 - PubMed
  55. Blood. 2003 Jun 15;101(12):4775-82 - PubMed
  56. Acta Neuropathol. 2005 Feb;109(2):181-90 - PubMed
  57. J Immunol. 2010 Oct 15;185(8):4846-55 - PubMed
  58. J Immunol. 2006 Dec 1;177(11):8053-64 - PubMed
  59. Blood. 1997 Dec 1;90(11):4459-72 - PubMed
  60. J Immunol. 2002 Feb 15;168(4):1940-9 - PubMed
  61. Nature. 1992 Mar 5;356(6364):63-6 - PubMed
  62. J Neuropathol Exp Neurol. 2002 Jun;61(6):539-46 - PubMed
  63. J Neuropathol Exp Neurol. 2008 Dec;67(12):1113-21 - PubMed
  64. J Exp Med. 1993 Jan 1;177(1):57-68 - PubMed
  65. J Exp Med. 1999 Nov 1;190(9):1351-6 - PubMed
  66. J Immunol. 2009 May 15;182(10):5909-13 - PubMed
  67. J Neuroimmunol. 2003 Sep;142(1-2):47-57 - PubMed
  68. Adv Anat Embryol Cell Biol. 1980;59:I-VI,1-62 - PubMed
  69. J Neuroimmunol. 1997 Dec;80(1-2):158-64 - PubMed
  70. Science. 1988 Jan 15;239(4837):290-2 - PubMed
  71. J Neuroimmunol. 2000 Jan 3;102(1):32-43 - PubMed
  72. Vascul Pharmacol. 2002 Jun;38(6):315-22 - PubMed
  73. Lab Invest. 1994 Jan;70(1):39-52 - PubMed
  74. Neuropathol Appl Neurobiol. 2011 Feb;37(1):24-39 - PubMed
  75. Blood. 1996 Dec 15;88(12):4585-93 - PubMed
  76. Neuropathol Appl Neurobiol. 2008 Apr;34(2):131-44 - PubMed
  77. Trends Pharmacol Sci. 2006 Jan;27(1):48-55 - PubMed
  78. Trends Immunol. 2005 Sep;26(9):485-95 - PubMed
  79. Immunity. 2001 May;14(5):547-60 - PubMed
  80. Ann Neurol. 1993 Aug;34(2):145-54 - PubMed
  81. Eur J Immunol. 1981 Mar;11(3):195-9 - PubMed
  82. Nat Rev Immunol. 2003 Jul;3(7):569-81 - PubMed
  83. Blood. 2003 Nov 15;102(10):3675-83 - PubMed
  84. Nature. 2009 Nov 5;462(7269):94-8 - PubMed

Publication Types