Display options
Share it on

Front Neural Circuits. 2011 Apr 25;5:5. doi: 10.3389/fncir.2011.00005. eCollection 2011.

Lateral Connectivity in the Olfactory Bulb is Sparse and Segregated.

Frontiers in neural circuits

David H Kim, Matthew E Phillips, Andrew Y Chang, Hetal K Patel, Katherine T Nguyen, David C Willhite

Affiliations

  1. Department of Neurobiology, Yale University School of Medicine New Haven, CT, USA.

PMID: 21559072 PMCID: PMC3084525 DOI: 10.3389/fncir.2011.00005

Abstract

Lateral connections in the olfactory bulb were previously thought to be organized for center-surround inhibition. However, recent anatomical and physiological studies showed sparse and distributed interactions of inhibitory granule cells (GCs) which tended to be organized in columnar clusters. Little is known about how these distributed clusters are interconnected. In this study, we use transsynaptic tracing viruses bearing green or red fluorescent proteins to further elucidate mitral- and tufted-to-GC connectivity. Separate sites in the glomerular layer were injected with each virus. Columns with labeling from both viruses after transsynaptic spread show sparse red or green GCs which tended to be segregated. However, there was a higher incidence of co-labeled cells than chance would predict. Similar segregation of labeling is observed from dual injections into olfactory cortex. Collectively, these results suggest that neighboring mitral and tufted cells receive inhibitory inputs from segregated subsets of GCs, enabling inhibition of a center by specific and discontinuous lateral elements.

Keywords: circuits; connectivity; lateral inhibition; olfaction; olfactory bulb

References

  1. Neuron. 2009 Jun 25;62(6):850-61 - PubMed
  2. Neuron. 2009 Sep 24;63(6):854-64 - PubMed
  3. J Microsc. 1984 May;134(Pt 2):127-36 - PubMed
  4. BMC Neurosci. 2006 Jan 24;7:7 - PubMed
  5. Trends Neurosci. 2008 Aug;31(8):392-400 - PubMed
  6. J Neurovirol. 2009 Sep;15(5-6):458-64 - PubMed
  7. Chem Senses. 2001 Jun;26(5):577-84 - PubMed
  8. Neuroscience. 1987 Apr;21(1):151-65 - PubMed
  9. J Neurophysiol. 2001 Jan;85(1):435-8 - PubMed
  10. Brain Res. 1981 Sep 21;221(1):81-107 - PubMed
  11. PLoS One. 2007 Aug 01;2(8):e682 - PubMed
  12. Nat Neurosci. 2000 Dec;3(12):1248-55 - PubMed
  13. J Neurophysiol. 1953 Jan;16(1):37-68 - PubMed
  14. APMIS. 1988 Oct;96(10):857-81 - PubMed
  15. J Neurosci. 2000 Oct 1;20(19):7446-54 - PubMed
  16. J Neurophysiol. 2004 Dec;92(6):3192-9 - PubMed
  17. J Neurosci. 2007 Feb 14;27(7):1534-42 - PubMed
  18. J Comp Neurol. 1983 Sep 20;219(3):339-55 - PubMed
  19. J Comp Neurol. 2007 Jul 1;503(1):1-34 - PubMed
  20. Physiol Rev. 2006 Apr;86(2):409-33 - PubMed
  21. Neuron. 2002 Mar 28;34(1):115-26 - PubMed
  22. Brain Res. 1980 Oct 6;198(2):465-71 - PubMed
  23. J Neurosci. 2008 Aug 13;28(33):8217-29 - PubMed
  24. J Virol. 2003 Sep;77(18):10106-12 - PubMed
  25. Brain Res. 1998 Mar 30;788(1-2):35-42 - PubMed
  26. PLoS Pathog. 2009 Oct;5(10):e1000640 - PubMed
  27. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12592-7 - PubMed
  28. J Comp Neurol. 1984 Jul 1;226(3):346-56 - PubMed
  29. Nat Neurosci. 2009 Feb;12(2):103-4 - PubMed
  30. Cell. 1993 Jan;72 Suppl:139-49 - PubMed
  31. Brain Res. 1975 Nov 21;98(3):596-600 - PubMed
  32. Cell. 1999 Mar 5;96(5):713-23 - PubMed
  33. J Neurosci. 2003 May 1;23(9):3844-54 - PubMed
  34. Neuroinformatics. 2004;2(1):3-18 - PubMed
  35. Nature. 2011 Apr 14;472(7342):191-6 - PubMed
  36. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11029-34 - PubMed
  37. J Comp Neurol. 2003 Sep 29;464(4):525-39 - PubMed
  38. J Comp Neurol. 1988 Mar 15;269(3):355-70 - PubMed
  39. Nat Neurosci. 2009 Feb;12(2):210-20 - PubMed
  40. Neuron. 2008 Feb 28;57(4):482-97 - PubMed
  41. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9264-9 - PubMed
  42. Trends Mol Med. 2008 Mar;14(3):134-40 - PubMed
  43. Nat Neurosci. 2008 Jan;11(1):80-7 - PubMed

Publication Types

Grant support