Display options
Share it on

Front Microbiol. 2011 May 03;2:96. doi: 10.3389/fmicb.2011.00096. eCollection 2011.

Conidial Dihydroxynaphthalene Melanin of the Human Pathogenic Fungus Aspergillus fumigatus Interferes with the Host Endocytosis Pathway.

Frontiers in microbiology

Andreas Thywißen, Thorsten Heinekamp, Hans-Martin Dahse, Jeannette Schmaler-Ripcke, Sandor Nietzsche, Peter F Zipfel, Axel A Brakhage

Affiliations

  1. Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany.

PMID: 21747802 PMCID: PMC3128974 DOI: 10.3389/fmicb.2011.00096

Abstract

Aspergillus fumigatus is the most important air-borne fungal pathogen of humans. The interaction of the pathogen with the host's immune system represents a key process to understand pathogenicity. For elimination of invading microorganisms, they need to be efficiently phagocytosed and located in acidified phagolysosomes. However, as shown previously, A. fumigatus is able to manipulate the formation of functional phagolysosomes. Here, we demonstrate that in contrast to pigmentless pksP mutant conidia of A. fumigatus, the gray-green wild-type conidia inhibit the acidification of phagolysosomes of alveolar macrophages, monocyte-derived macrophages, and human neutrophil granulocytes. Therefore, this inhibition is independent of the cell type and applies to the major immune effector cells required for defense against A. fumigatus. Studies with melanin ghosts indicate that the inhibitory effect of wild-type conidia is due to their dihydroxynaphthalene (DHN)-melanin covering the conidia, whereas the hydrophobin RodA rodlet layer plays no role in this process. This is also supported by the observation that pksP conidia still exhibit the RodA hydrophobin layer, as shown by scanning electron microscopy. Mutants defective in different steps of the DHN-melanin biosynthesis showed stronger inhibition than pksP mutant conidia but lower inhibition than wild-type conidia. Moreover, A. fumigatus and A. flavus led to a stronger inhibition of phagolysosomal acidification than A. nidulans and A. terreus. These data indicate that a certain type of DHN-melanin that is different in the various Aspergillus species, is required for maximal inhibition of phagolysosomal acidification. Finally, we identified the vacuolar ATPase (vATPase) as potential target for A. fumigatus based on the finding that addition of bafilomycin which inhibits vATPase, led to complete inhibition of the acidification whereas the fusion of phagosomes containing wild-type conidia and lysosomes was not affected.

Keywords: Aspergillus fumigatus; endocytosis; macrophages; melanin; neutrophils; phagolysosome; virulence

References

  1. Nature. 2009 Aug 27;460(7259):1117-21 - PubMed
  2. J Cell Biol. 1994 Mar;124(5):677-88 - PubMed
  3. Infect Immun. 2005 Sep;73(9):5420-5 - PubMed
  4. Nature. 2008 Jan 17;451(7176):350-4 - PubMed
  5. Contrib Microbiol. 1999;2:21-43 - PubMed
  6. Cell Microbiol. 2003 Aug;5(8):561-70 - PubMed
  7. Infect Immun. 1997 Dec;65(12):5110-7 - PubMed
  8. Arch Microbiol. 2006 Nov;186(5):345-55 - PubMed
  9. Infect Immun. 1992 May;60(5):1913-8 - PubMed
  10. J Immunol. 1999 May 15;162(10):6148-54 - PubMed
  11. PLoS Pathog. 2005 Nov;1(3):e30 - PubMed
  12. J Proteome Res. 2010 Jul 2;9(7):3427-42 - PubMed
  13. Med Microbiol Immunol. 1998 Oct;187(2):79-89 - PubMed
  14. Trends Microbiol. 2001 Aug;9(8):382-9 - PubMed
  15. J Exp Med. 1993 Jun 1;177(6):1605-11 - PubMed
  16. Fungal Genet Biol. 2003 Mar;38(2):143-58 - PubMed
  17. Med Mycol. 1998 Jun;36(3):165-8 - PubMed
  18. PLoS Pathog. 2005 Dec;1(4):e42 - PubMed
  19. J Bacteriol. 1998 Jun;180(12):3031-8 - PubMed
  20. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327-31 - PubMed
  21. Curr Opin Microbiol. 2010 Aug;13(4):409-15 - PubMed
  22. J Biol Chem. 1992 Jan 5;267(1):126-32 - PubMed
  23. J Immunol. 2010 Dec 15;185(12):7614-22 - PubMed
  24. Infect Immun. 2000 Jun;68(6):3736-9 - PubMed
  25. J Med Microbiol. 2004 Mar;53(Pt 3):175-181 - PubMed
  26. Nature. 2008 Oct 30;455(7217):1244-7 - PubMed
  27. J Immunol. 2006 Feb 1;176(3):1806-13 - PubMed
  28. Mol Immunol. 2008 Jun;45(11):3178-89 - PubMed
  29. Cell Microbiol. 2002 Dec;4(12):793-803 - PubMed
  30. Cell Microbiol. 2008 Mar;10(3):807-20 - PubMed
  31. Infect Immun. 2003 Jun;71(6):3034-42 - PubMed
  32. Infect Immun. 1994 Oct;62(10):4380-8 - PubMed
  33. Trends Cell Biol. 1995 May;5(5):183-6 - PubMed
  34. Microbes Infect. 2008 Feb;10(2):175-84 - PubMed
  35. J Immunol. 2009 Apr 15;182(8):4938-46 - PubMed
  36. Infect Immun. 1995 Nov;63(11):4231-7 - PubMed
  37. PLoS Pathog. 2006 Dec;2(12):e129 - PubMed
  38. Gene. 1985;40(1):99-106 - PubMed
  39. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972-6 - PubMed
  40. Cell Microbiol. 2007 Feb;9(2):368-81 - PubMed
  41. BMC Microbiol. 2009 Aug 24;9:177 - PubMed
  42. J Gen Microbiol. 1973 Aug;77(2):417-86 - PubMed
  43. PLoS One. 2011 Jan 05;6(1):e15943 - PubMed
  44. PLoS Pathog. 2007 Feb;3(2):e13 - PubMed
  45. J Infect Dis. 2003 Jul 15;188(2):320-6 - PubMed
  46. Clin Microbiol Rev. 1999 Apr;12(2):310-50 - PubMed
  47. Curr Genet. 1998 May;33(5):378-85 - PubMed
  48. BMC Microbiol. 2010 Apr 08;10:105 - PubMed
  49. J Bacteriol. 1999 Oct;181(20):6469-77 - PubMed
  50. Infect Immun. 2003 Feb;71(2):891-903 - PubMed
  51. Microbes Infect. 2011 Feb;13(2):151-9 - PubMed
  52. Infect Immun. 2009 May;77(5):2184-92 - PubMed
  53. J Clin Microbiol. 1998 Jun;36(6):1494-500 - PubMed
  54. Appl Environ Microbiol. 2004 Mar;70(3):1253-62 - PubMed
  55. Infect Immun. 1997 Apr;65(4):1510-4 - PubMed
  56. Cell. 2007 Jun 29;129(7):1287-98 - PubMed
  57. J Cell Biol. 2001 Aug 6;154(3):631-44 - PubMed
  58. PLoS Pathog. 2010 Mar 19;6(3):e1000822 - PubMed

Publication Types