Display options
Share it on

Int J Mol Imaging. 2011;2011:834515. doi: 10.1155/2011/834515. Epub 2011 Sep 06.

CA19-9 as a Potential Target for Radiolabeled Antibody-Based Positron Emission Tomography of Pancreas Cancer.

International journal of molecular imaging

Mark D Girgis, Tove Olafsen, Vania Kenanova, Katelyn E McCabe, Anna M Wu, James S Tomlinson

Affiliations

  1. Department of Surgery, UCLA, 10833 LeConte Avenue, Rm 54-140, Los Angeles, CA 90095, USA.

PMID: 21912743 PMCID: PMC3168788 DOI: 10.1155/2011/834515

Abstract

Introduction. Sensitive and specific imaging of pancreas cancer are necessary for accurate diagnosis, staging, and treatment. The vast majority of pancreas cancers express the carbohydrate tumor antigen CA19-9. The goal of this study was to determine the potential to target CA19-9 with a radiolabeled anti-CA19-9 antibody for imaging pancreas cancer. Methods. CA19-9 was quantified using flow cytometry on human pancreas cancer cell lines. An intact murine anti-CA19-9 monoclonal antibody was labeled with a positron emitting radionuclide (Iodine-124) and injected into mice harboring antigen positive and negative xenografts. MicroPET/CT were performed at successive time intervals (72 hours, 96 hours, 120 hours) after injection. Radioactivity was measured in blood and tumor to provide objective confirmation of the images. Results. Antigen expression by flow cytometry revealed approximately 1.3 × 10(6) CA19-9 antigens for the positive cell line and no expression in the negative cell line. Pancreas xenograft imaging with Iodine-124-labeled anti-CA19-9 mAb demonstrated an average tumor to blood ratio of 5 and positive to negative tumor ratio of 20. Conclusion. We show in vivo targeting of our antigen positive xenograft with a radiolabeled anti-CA19-9 antibody. These data demonstrate the potential to achieve anti-CA19-9 antibody based positron emission tomography of pancreas cancer.

References

  1. Cancer. 1985 Jul 15;56(2):397-402 - PubMed
  2. Ann Surg. 2006 Jul;244(1):10-5 - PubMed
  3. Cancer Biother Radiopharm. 2001 Feb;16(1):25-35 - PubMed
  4. World J Surg. 2003 Mar;27(3):324-9 - PubMed
  5. Cancer Res. 1983 Nov;43(11):5489-92 - PubMed
  6. Arch Biochem Biophys. 2004 Jun 15;426(2):122-31 - PubMed
  7. Mol Imaging. 2003 Jul;2(3):131-7 - PubMed
  8. J Gastroenterol Hepatol. 2008 Jan;23(1):23-33 - PubMed
  9. Ann Surg. 1999 May;229(5):729-37; discussion 737-8 - PubMed
  10. Lancet. 1992 Nov 7;340(8828):1158-9 - PubMed
  11. Virchows Arch B Cell Pathol Incl Mol Pathol. 1986;51(6):535-44 - PubMed
  12. Glycoconj J. 2004;20(5):353-64 - PubMed
  13. Clin Radiol. 2010 Jul;65(7):500-16 - PubMed
  14. Chang Gung Med J. 2007 May-Jun;30(3):189-209 - PubMed
  15. J Surg Oncol. 1991 Jul;47(3):148-54 - PubMed
  16. J Clin Oncol. 2010 Oct 10;28(29):4450-6 - PubMed
  17. Nucl Med Commun. 1986 May;7(5):355-62 - PubMed
  18. N Engl J Med. 2011 May 12;364(19):1817-25 - PubMed
  19. Cancer Res. 1990 Apr 1;50(7):2128-34 - PubMed
  20. Curr Pharm Biotechnol. 2008 Dec;9(6):421-2 - PubMed
  21. Br J Cancer. 1986 Feb;53(2):189-95 - PubMed
  22. Adv Drug Deliv Rev. 2004 Sep 22;56(11):1649-59 - PubMed
  23. J Gastroenterol Hepatol. 1990 Jan-Feb;5(1):25-31 - PubMed
  24. Oncogene. 2011 Jun 2;30(22):2514-25 - PubMed
  25. Somatic Cell Genet. 1979 Nov;5(6):957-71 - PubMed
  26. Ann Surg. 2009 Dec;250(6):957-63 - PubMed
  27. CA Cancer J Clin. 2010 Sep-Oct;60(5):277-300 - PubMed
  28. Curr Opin Biotechnol. 2002 Dec;13(6):603-8 - PubMed
  29. Am J Clin Pathol. 1993 Jun;99(6):726-8 - PubMed
  30. Br J Radiol. 2003 Dec;76(912):857-65 - PubMed
  31. IEEE Trans Med Imaging. 1997 Apr;16(2):145-58 - PubMed
  32. Cancer Res. 1982 Nov;42(11):4820-3 - PubMed
  33. Expert Opin Drug Deliv. 2006 Jan;3(1):53-70 - PubMed
  34. Arch Surg. 2008 Dec;143(12):1166-71 - PubMed

Publication Types

Grant support