Display options
Share it on

Curr Neuropharmacol. 2011 Mar;9(1):122-8. doi: 10.2174/157015911795017164.

Identifying changes in the synaptic proteome of cirrhotic alcoholic superior frontal gyrus.

Current neuropharmacology

N Etheridge, R D Mayfield, R A Harris, P R Dodd

Affiliations

  1. School of Chemistry and Molecular Biosciences, University of Queensland, Australia.

PMID: 21886576 PMCID: PMC3137166 DOI: 10.2174/157015911795017164

Abstract

Hepatic complications are a common side-effect of alcoholism. Without the detoxification capabilities of the liver, alcohol misuse induces changes in gene and protein expression throughout the body. A global proteomics approach was used to identify these protein changes in the brain. We utilised human autopsy tissue from the superior frontal gyrus (SFG) of six cirrhotic alcoholics, six alcoholics without comorbid disease, and six non-alcoholic non-cirrhotic controls. Synaptic proteins were isolated and used in two-dimensional differential in-gel electrophoresis coupled with mass spectrometry. Many expression differences were confined to one or other alcoholic sub-group. Cirrhotic alcoholics showed 99 differences in protein expression levels from controls, of which half also differed from non-comorbid alcoholics. This may reflect differences in disease severity between the sub-groups of alcoholics, or differences in patterns of harmful drinking. Alternatively, the protein profiles may result from differences between cirrhotic and non-comorbid alcoholics in subjects' responses to alcohol misuse. Ten proteins were identified in at least two spots on the 2D gel; they were involved in basal energy metabolism, synaptic vesicle recycling, and chaperoning. These post-translationally modified isoforms were differentially regulated in cirrhotic alcoholics, indicating a level of epigenetic control not previously observed in this disorder.

Keywords: Alcoholism; cirrhosis; post-translational modification.; proteomics

References

  1. Baillieres Clin Gastroenterol. 1993 Sep;7(3):555-79 - PubMed
  2. J Biol Chem. 2004 Jul 23;279(30):31445-54 - PubMed
  3. Mol Cell. 2008 Aug 8;31(3):438-48 - PubMed
  4. Free Radic Biol Med. 1998 May;24(7-8):1159-67 - PubMed
  5. Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1295-300 - PubMed
  6. Nat Clin Pract Gastroenterol Hepatol. 2007 Jan;4(1):24-34 - PubMed
  7. Neurochem Pathol. 1986 Jun;4(3):177-98 - PubMed
  8. Science. 2007 Apr 27;316(5824):570-4 - PubMed
  9. Mol Cell. 2006 Aug;23(4):607-18 - PubMed
  10. Free Radic Biol Med. 1996;20(3):391-7 - PubMed
  11. Arch Biochem Biophys. 2007 Sep 15;465(2):430-6 - PubMed
  12. J Proteome Res. 2008 Feb;7(2):587-602 - PubMed
  13. J Biol Chem. 2001 Apr 13;276(15):12174-81 - PubMed
  14. Electrophoresis. 1999 Apr-May;20(4-5):907-16 - PubMed
  15. Mol Divers. 2005;9(4):385-96 - PubMed
  16. Cell. 2007 Dec 14;131(6):1190-203 - PubMed
  17. Biochem Biophys Res Commun. 2005 Dec 2;337(4):1308-18 - PubMed
  18. Neuron. 2005 May 19;46(4):533-40 - PubMed
  19. J Biol Chem. 2007 May 18;282(20):14695-707 - PubMed
  20. Biochem Biophys Res Commun. 2000 Mar 16;269(2):397-400 - PubMed
  21. Nat Cell Biol. 2008 Jul;10(7):866-73 - PubMed
  22. Alcohol Clin Exp Res. 2005 Aug;29(8):1504-13 - PubMed
  23. J Neurochem. 1999 Nov;73(5):2139-48 - PubMed
  24. FEBS Lett. 1976 Mar 1;62(3):338-41 - PubMed
  25. Proteomics Clin Appl. 2009 Jun 24;3(6):730-742 - PubMed
  26. Proteomics. 2002 Nov;2(11):1547-76 - PubMed
  27. Cell. 2006 Nov 3;127(3):635-48 - PubMed
  28. Nat Biotechnol. 2006 Oct;24(10):1285-92 - PubMed
  29. FASEB J. 1998 Feb;12(2):221-30 - PubMed
  30. Nat Rev Mol Cell Biol. 2004 Feb;5(2):133-47 - PubMed
  31. Mol Aspects Med. 2008 Feb-Apr;29(1-2):9-16 - PubMed
  32. Circulation. 2009 Jul 21;120(3):245-54 - PubMed

Publication Types

Grant support