Display options
Share it on

Front Syst Neurosci. 2011 Jul 14;5:59. doi: 10.3389/fnsys.2011.00059. eCollection 2011.

Components of cross-frequency modulation in health and disease.

Frontiers in systems neuroscience

Elena A Allen, Jingyu Liu, Kent A Kiehl, Joel Gelernter, Godfrey D Pearlson, Nora I Perrone-Bizzozero, Vince D Calhoun

Affiliations

  1. The Mind Research Network Albuquerque, NM, USA.

PMID: 21808609 PMCID: PMC3139214 DOI: 10.3389/fnsys.2011.00059

Abstract

The cognitive deficits associated with schizophrenia are commonly believed to arise from the abnormal temporal integration of information, however a quantitative approach to assess network coordination is lacking. Here, we propose to use cross-frequency modulation (cfM), the dependence of local high-frequency activity on the phase of widespread low-frequency oscillations, as an indicator of network coordination and functional integration. In an exploratory analysis based on pre-existing data, we measured cfM from multi-channel EEG recordings acquired while schizophrenia patients (n = 47) and healthy controls (n = 130) performed an auditory oddball task. Novel application of independent component analysis (ICA) to modulation data delineated components with specific spatial and spectral profiles, the weights of which showed covariation with diagnosis. Global cfM was significantly greater in healthy controls (F(1,175) = 9.25, P < 0.005), while modulation at fronto-temporal electrodes was greater in patients (F(1,175) = 17.5, P < 0.0001). We further found that the weights of schizophrenia-relevant components were associated with genetic polymorphisms at previously identified risk loci. Global cfM decreased with copies of 957C allele in the gene for the dopamine D2 receptor (r = -0.20, P < 0.01) across all subjects. Additionally, greater "aberrant" fronto-temporal modulation in schizophrenia patients was correlated with several polymorphisms in the gene for the α2-subunit of the GABA(A) receptor (GABRA2) as well as the total number of risk alleles in GABRA2 (r = 0.45, P < 0.01). Overall, our results indicate great promise for this approach in establishing patterns of cfM in health and disease and elucidating the roles of oscillatory interactions in functional connectivity.

Keywords: EEG; biomarker; cross-frequency coupling; cross-frequency modulation; independent component analysis; oscillations; schizophrenia

References

  1. Neuron. 2010 May 13;66(3):353-69 - PubMed
  2. Clin Neurophysiol. 2005 Dec;116(12):2719-33 - PubMed
  3. Front Hum Neurosci. 2010 Oct 19;4:191 - PubMed
  4. Int J Psychophysiol. 2006 May;60(2):162-71 - PubMed
  5. Schizophr Bull. 1998;24(2):203-18 - PubMed
  6. Biol Psychiatry. 2008 Apr 15;63(8):744-7 - PubMed
  7. Neuron. 2008 Nov 26;60(4):683-97 - PubMed
  8. Front Neurosci. 2008 Dec 15;2(2):145-54 - PubMed
  9. Schizophr Bull. 2008 Sep;34(5):974-80 - PubMed
  10. Pharmacogenomics J. 2001;1(2):152-6 - PubMed
  11. Neuroimage. 2009 Apr 15;45(3):1040-6 - PubMed
  12. Schizophr Res. 2008 Oct;105(1-3):262-71 - PubMed
  13. Neuroimage. 2004 Jul;22(3):1214-22 - PubMed
  14. Trends Cogn Sci. 2005 Oct;9(10):474-80 - PubMed
  15. Am J Hum Genet. 2006 May;78(5):815-826 - PubMed
  16. Int J Psychophysiol. 2007 Apr;64(1):24-30 - PubMed
  17. Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17356-61 - PubMed
  18. Am J Psychiatry. 2008 Dec;165(12):1594-603 - PubMed
  19. Schizophr Res. 2005 Feb 1;73(1):31-7 - PubMed
  20. Neuroimage. 2009 Jul 1;46(3):809-16 - PubMed
  21. Neural Comput. 1995 Nov;7(6):1129-59 - PubMed
  22. Genomics. 2008 Jan;91(1):61-9 - PubMed
  23. Schizophr Res. 2009 Apr;109(1-3):24-37 - PubMed
  24. J Neurophysiol. 2005 Sep;94(3):1904-11 - PubMed
  25. Clin EEG Neurosci. 2005 Jan;36(1):25-35 - PubMed
  26. Neuroscience. 2009 Nov 24;164(1):131-40 - PubMed
  27. J Neurochem. 1995 Sep;65(3):1157-65 - PubMed
  28. J Hum Genet. 2009 Feb;54(2):98-107 - PubMed
  29. Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19878-83 - PubMed
  30. Front Hum Neurosci. 2010 Oct 29;4:197 - PubMed
  31. Schizophr Bull. 2008 Sep;34(5):944-61 - PubMed
  32. J Neurosci Methods. 2008 May 30;170(2):352-7 - PubMed
  33. Brain Res Brain Res Rev. 2003 Jan;41(1):57-78 - PubMed
  34. J Cogn Neurosci. 2009 May;21(5):875-89 - PubMed
  35. Neuroimage. 2011 Jan 15;54(2):836-50 - PubMed
  36. Neuron. 2008 May 8;58(3):429-41 - PubMed
  37. Am J Psychiatry. 2008 Dec;165(12):1585-93 - PubMed
  38. Int J Psychophysiol. 2000 Dec 1;38(3):301-13 - PubMed
  39. Hippocampus. 1993 Jul;3(3):317-30 - PubMed
  40. Neuroimage. 2009 Mar;45(1 Suppl):S163-72 - PubMed
  41. Neuropsychobiology. 2006;54(3):166-70 - PubMed
  42. Trends Neurosci. 2007 Jul;30(7):309-16 - PubMed
  43. Psychopharmacology (Berl). 2006 Jul;187(1):68-72 - PubMed
  44. Front Hum Neurosci. 2008 Aug 20;2:7 - PubMed
  45. PLoS Biol. 2011 Apr;9(4):e1000610 - PubMed
  46. Schizophr Bull. 2008 Sep;34(5):927-43 - PubMed
  47. J Neurosci. 2008 Aug 13;28(33):8268-72 - PubMed
  48. Science. 2006 Sep 15;313(5793):1626-8 - PubMed
  49. Schizophr Bull. 2007 Jan;33(1):21-32 - PubMed
  50. PLoS One. 2008;3(12):e3990 - PubMed
  51. Trends Cogn Sci. 2010 Nov;14(11):506-15 - PubMed
  52. J Neurosci Methods. 2008 Sep 15;174(1):50-61 - PubMed
  53. Nat Rev Neurosci. 2005 Apr;6(4):312-24 - PubMed
  54. Int J Psychophysiol. 2004 Jan;51(2):97-116 - PubMed
  55. Hum Brain Mapp. 2009 Jan;30(1):241-55 - PubMed
  56. J Neurophysiol. 2010 Aug;104(2):1195-210 - PubMed
  57. Schizophr Res. 1998 Mar 10;30(2):115-25 - PubMed
  58. Hippocampus. 2005;15(7):890-900 - PubMed
  59. Psychopharmacology (Berl). 2006 Nov;188(4):530-40 - PubMed
  60. Am J Psychiatry. 2005 Mar;162(3):459-65 - PubMed
  61. Clin Neurophysiol. 2008 May;119(5):1166-75 - PubMed
  62. Neurosci Lett. 2006 Oct 30;407(3):195-8 - PubMed
  63. Science. 2008 Apr 4;320(5872):110-3 - PubMed
  64. J Neurosci Methods. 2004 Mar 15;134(1):9-21 - PubMed

Publication Types

Grant support