Display options
Share it on

Cytotechnology. 1997 May;24(1):55-64. doi: 10.1023/A:1007969502256.

Chinese hamster ovary cells produce sufficient recombinant insulin-like growth factor I to support growth in serum-free medium. Serum-free growth of IGF-I-producing CHO cells.

Cytotechnology

S M Hunt, S C Pak, M W Bridges, P P Gray, M J Sleigh

Affiliations

  1. Department of Biotechnology, University of New South Wales, Kensington, NSW, Australia.

PMID: 22358597 PMCID: PMC3449609 DOI: 10.1023/A:1007969502256

Abstract

Insulin-like growth factor I has similar mitogenic effects to insulin, a growth factor required by most cells in culture, and it can replace insulin in serum-free formulations for some cells. Chinese Hamster Ovary cells grow well in serum-free medium with insulin and transferrin as the only exogenous growth factors. An alternative approach to addition of exogenous growth factors to serum-free medium is transfection of host cells with growth factor-encoding genes, permitting autocrine growth. Taking this approach, we constructed an IGF-I heterologous gene driven by the cytomegalovirus promoter, introduced it into Chinese Hamster Ovary cells and examined the growth characteristics of Insulin-like growth factor I-expressing clonal cells in the absence of the exogenous factor. The transfected cells secreted up to 500 ng/10(6) cells/day of mature Insulin-like growth factor I into the conditioned medium and as a result they grew autonomously in serum-free medium containing transferrin as the only added growth factor. This growth-stimulating effect, observed under both small and large scale culture conditions, was maximal since no further improvement was observed in the presence of exogenous insulin.

References

  1. EMBO J. 1987 Dec 1;6(12):3633-9 - PubMed
  2. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
  3. Nucleic Acids Res. 1988 Sep 12;16(17):8718 - PubMed
  4. J Biol Chem. 1992 Jul 25;267(21):14629-36 - PubMed
  5. Biotechniques. 1988 Jul-Aug;6(7):632-8 - PubMed
  6. J Biol Chem. 1992 Sep 25;267(27):19565-71 - PubMed
  7. Annu Rev Physiol. 1985;47:425-42 - PubMed
  8. Biochim Biophys Acta. 1993 Jun 30;1177(3):307-17 - PubMed
  9. Genet Eng. 1988;(7):91-127 - PubMed
  10. Endocrinology. 1989 Aug;125(2):766-72 - PubMed
  11. J Cell Physiol. 1983 May;115(2):137-42 - PubMed
  12. Proc Natl Acad Sci U S A. 1987 May;84(9):2638-42 - PubMed
  13. Endocr Rev. 1989 Feb;10(1):68-91 - PubMed
  14. Mol Cell Endocrinol. 1990 Nov 12;74(1):45-59 - PubMed
  15. J Mol Endocrinol. 1991 Jun;6(3):231-9 - PubMed
  16. Anal Biochem. 1988 Aug 15;173(1):93-5 - PubMed
  17. J Cell Biol. 1993 Jun;121(5):1153-63 - PubMed
  18. Diabetologia. 1993 Dec;36(12):1322-5 - PubMed
  19. Gene. 1988 Jun 30;66(2):235-44 - PubMed
  20. J Biol Chem. 1983 May 25;258(10):6043-50 - PubMed
  21. Nature. 1983 Dec 8-14;306(5943):609-11 - PubMed
  22. Adv Clin Chem. 1986;25:49-115 - PubMed
  23. J Clin Endocrinol Metab. 1984 May;58(5):850-6 - PubMed
  24. Cell. 1986 Jan 31;44(2):283-92 - PubMed
  25. Endocrinology. 1992 Jun;130(6):3175-83 - PubMed
  26. J Clin Invest. 1981 Jan;67(1):10-9 - PubMed
  27. Endocrinology. 1988 Apr;122(4):1314-20 - PubMed
  28. J Biol Chem. 1986 Apr 15;261(11):4828-32 - PubMed
  29. Annu Rev Physiol. 1985;47:443-67 - PubMed
  30. Anal Biochem. 1980 Mar 1;102(2):255-70 - PubMed
  31. Cell. 1983 Dec;35(2 Pt 1):531-8 - PubMed
  32. Biochem Biophys Res Commun. 1987 Dec 16;149(2):398-404 - PubMed

Publication Types