Display options
Share it on

Genes Cancer. 2011 Nov;2(11):1034-43. doi: 10.1177/1947601912443127.

Increased wild-type N-ras activation by neurofibromin down-regulation increases human neuroblastoma stem cell malignancy.

Genes & cancer

Dan Han, Barbara A Spengler, Robert A Ross

Affiliations

  1. Department of Biological Sciences, Fordham University, Bronx, NY, USA.

PMID: 22737269 PMCID: PMC3379567 DOI: 10.1177/1947601912443127

Abstract

Cellular heterogeneity is a well-known feature of human neuroblastoma tumors and cell lines. Of the 3 phenotypes (N-, I-, and S-type) isolated and characterized, the I-type cancer stem cell of neuroblastoma is the most malignant. Here, we report that, although wild-type N-Ras protein is expressed at the same level in all 3 neuroblastoma cell phenotypes, activated N-Ras-GTP level is significantly higher in I-type cancer stem cells. When activated N-Ras levels were decreased by transfection of a dominant-negative N-Ras construct, the malignant potential of I-type cancer stem cells decreased significantly. Conversely, when weakly malignant N-type cells were transfected with a constitutively active N-Ras construct, activated N-Ras levels, and malignant potential, were significantly increased. Thus, high levels of N-Ras-GTP are required for the increased malignancy of I-type neuroblastoma cancer stem cells. Moreover, increased activation of N-Ras results from significant down-regulation of neurofibromin (NF1), an important RasGAP. This specific down-regulation is mediated by an ubiquitin-proteasome-dependent pathway. Thus, decreased expression of NF1 in I-type neuroblastoma cancer stem cells causes a high level of activated N-Ras that is, at least in part, responsible for their higher tumorigenic potential.

Keywords: N-Ras; malignancy; neuroblastoma cancer stem cell; neurofibromin

References

  1. J Neurol Sci. 1998 May 7;157(2):129-37 - PubMed
  2. Nat Rev Cancer. 2003 Jan;3(1):11-22 - PubMed
  3. Future Oncol. 2009 Feb;5(1):105-16 - PubMed
  4. Nat Rev Cancer. 2005 Apr;5(4):275-84 - PubMed
  5. Nat Rev Cancer. 2003 Jun;3(6):459-65 - PubMed
  6. Curr Neurol Neurosci Rep. 2009 May;9(3):247-53 - PubMed
  7. Cell Growth Differ. 1995 Apr;6(4):449-56 - PubMed
  8. Curr Stem Cell Res Ther. 2009 Jan;4(1):9-15 - PubMed
  9. Cancer Res. 1991 Mar 15;51(6):1596-9 - PubMed
  10. Cancer Res. 2007 Oct 1;67(19):8980-4 - PubMed
  11. Nat Genet. 1993 Jan;3(1):62-6 - PubMed
  12. Nat Cell Biol. 1999 Jun;1(2):E25-7 - PubMed
  13. Biochem J. 2004 May 1;379(Pt 3):587-93 - PubMed
  14. Oncogene. 2000 Jan 6;19(1):115-23 - PubMed
  15. Oncogene. 2008 Apr 24;27(19):2754-62 - PubMed
  16. Science. 1984 Jun 8;224(4653):1121-4 - PubMed
  17. Nature. 1983 Aug 18-24;304(5927):596-602 - PubMed
  18. Cancer Res. 1989 Jan 1;49(1):219-25 - PubMed
  19. J Natl Cancer Inst. 1986 Mar;76(3):375-87 - PubMed
  20. J Natl Cancer Inst. 1984 Aug;73(2):405-16 - PubMed
  21. Oncologist. 2000;5(6):477-85 - PubMed
  22. J Neurochem. 2009 Apr;109(2):573-83 - PubMed
  23. Mutat Res. 1988 May;195(3):255-71 - PubMed
  24. Genes Dev. 2003 Feb 15;17(4):449-54 - PubMed
  25. Cancer Cell. 2009 Jul 7;16(1):44-54 - PubMed
  26. Oncogene. 2006 Feb 2;25(5):735-45 - PubMed
  27. Neoplasia. 2004 Nov-Dec;6(6):838-45 - PubMed
  28. Oncol Res. 1997;9(9):467-76 - PubMed
  29. Cancer Res. 1987 Mar 1;47(5):1383-9 - PubMed
  30. Genes Cancer. 2011 Mar;2(3):344-58 - PubMed
  31. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9658-62 - PubMed
  32. Cell. 2010 Jul 23;142(2):218-29 - PubMed

Publication Types

Grant support