Display options
Share it on

Stem Cells Int. 2012;2012:412610. doi: 10.1155/2012/412610. Epub 2012 Apr 23.

Human Muscle Progenitor Cells Displayed Immunosuppressive Effect through Galectin-1 and Semaphorin-3A.

Stem cells international

Séverine Lecourt, Yves Lepelletier, Valérie Vanneaux, Rafika Jarray, Thomas Domet, Françoise Raynaud, Réda Hadj-Slimane, Audrey Cras, Olivier Hermine, Jean-Pierre Marolleau, Jérôme Larghero

Affiliations

  1. INSERM UMR940, Institut Universitaire d'Hématologie, 75475 Paris Cedex 10, France.

PMID: 22606205 PMCID: PMC3347758 DOI: 10.1155/2012/412610

Abstract

In human skeletal muscle, myoblasts represent the main population of myogenic progenitors. We previously showed that, beside their myogenic differentiation capacities, myoblasts also differentiate towards osteogenic and chondrogenic lineages, some properties generally considered being hallmarks of mesenchymal stem cells (MSCs). MSCs are also characterized by their immunosuppressive potential, through cell-cell contacts and soluble factors, including prostaglandin E-2 (PGE-2), transforming growth factor-β1 (TGF-β1), interleukine-10, or indoleamine 2,3-dioxygenase. We and others also reported that Galectin-1 (Gal-1) and Semaphorin-3A (Sema-3A) were involved in MSCs-mediated immunosuppression. Here, we show that human myoblasts induce a significant and dose-dependant proliferation inhibition, independently of PGE-2 and TGF-β1. Our experiments revealed that myoblasts, in culture or in situ in human muscles, expressed and secreted Gal-1 and Sema-3A. Furthermore, myoblasts immunosuppressive functions were reverted by using blocking antibodies against Gal-1 or Sema-3A. Together, these results demonstrate an unsuspected immunosuppressive effect of myoblasts that may open new therapeutic perspectives.

References

  1. Gene Ther. 2005 Nov;12(22):1651-62 - PubMed
  2. Blood. 2007 Nov 15;110(10):3499-506 - PubMed
  3. Blood. 2010 Nov 11;116(19):3770-9 - PubMed
  4. Differentiation. 1996 Mar;60(1):47-57 - PubMed
  5. Blood. 2002 May 15;99(10):3838-43 - PubMed
  6. Clin Exp Immunol. 1994 Jan;95(1):166-72 - PubMed
  7. Blood. 2006 Apr 15;107(8):3321-9 - PubMed
  8. Blood. 2006 Feb 15;107(4):1484-90 - PubMed
  9. Trends Immunol. 2005 Jul;26(7):373-80 - PubMed
  10. Eur J Immunol. 2006 Jul;36(7):1782-93 - PubMed
  11. Blood. 2005 Feb 15;105(4):1815-22 - PubMed
  12. Muscle Nerve. 2003 Dec;28(6):659-82 - PubMed
  13. Arthritis Rheum. 2005 May;52(5):1595-603 - PubMed
  14. Stem Cells Dev. 2010 Jul;19(7):1075-9 - PubMed
  15. Cell. 2005 Jul 29;122(2):289-301 - PubMed
  16. Br J Haematol. 2005 Apr;129(1):118-29 - PubMed
  17. Eur J Immunol. 2005 May;35(5):1482-90 - PubMed
  18. Biotechnol Appl Biochem. 2004 Aug;40(Pt 1):25-34 - PubMed
  19. Exp Hematol. 2002 Jan;30(1):42-8 - PubMed
  20. Curr Drug Targets. 2005 Jun;6(4):395-405 - PubMed
  21. Blood. 2006 Jan 1;107(1):367-72 - PubMed
  22. Science. 1999 Apr 2;284(5411):143-7 - PubMed
  23. Exp Cell Res. 2010 Sep 10;316(15):2513-26 - PubMed
  24. Stem Cells. 2006 Feb;24(2):386-98 - PubMed
  25. Exp Hematol. 2010 Oct;38(10):922-32 - PubMed
  26. Gene Ther. 2011 Feb;18(2):109-16 - PubMed
  27. Nat Immunol. 2002 May;3(5):477-82 - PubMed
  28. Am J Physiol Cell Physiol. 2009 Aug;297(2):C238-52 - PubMed
  29. Leukemia. 2007 Jan;21(1):158-63 - PubMed

Publication Types