Display options
Share it on

Adv Hematol. 2012;2012:627920. doi: 10.1155/2012/627920. Epub 2012 Jun 13.

Genomic amplification of an endogenous retrovirus in zebrafish T-cell malignancies.

Advances in hematology

J Kimble Frazer, Lance A Batchelor, Diana F Bradley, Kim H Brown, Kimberly P Dobrinski, Charles Lee, Nikolaus S Trede

Affiliations

  1. Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA.

PMID: 22745640 PMCID: PMC3382231 DOI: 10.1155/2012/627920

Abstract

Genomic instability plays a crucial role in oncogenesis. Somatically acquired mutations can disable some genes and inappropriately activate others. In addition, chromosomal rearrangements can amplify, delete, or even fuse genes, altering their functions and contributing to malignant phenotypes. Using array comparative genomic hybridization (aCGH), a technique to detect numeric variations between different DNA samples, we examined genomes from zebrafish (Danio rerio) T-cell leukemias of three cancer-prone lines. In all malignancies tested, we identified recurring amplifications of a zebrafish endogenous retrovirus. This retrovirus, ZFERV, was first identified due to high expression of proviral transcripts in thymic tissue from larval and adult fish. We confirmed ZFERV amplifications by quantitative PCR analyses of DNA from wild-type fish tissue and normal and malignant D. rerio T cells. We also quantified ZFERV RNA expression and found that normal and neoplastic T cells both produce retrovirally encoded transcripts, but most cancers show dramatically increased transcription. In aggregate, these data imply that ZFERV amplification and transcription may be related to T-cell leukemogenesis. Based on these data and ZFERV's phylogenetic relation to viruses of the murine-leukemia-related virus class of gammaretroviridae, we posit that ZFERV may be oncogenic via an insertional mutagenesis mechanism.

References

  1. Adv Virol. 2011;2011:940210 - PubMed
  2. Leukemia. 2009 Oct;23(10):1825-35 - PubMed
  3. Oncogene. 2011 Oct 13;30(41):4289-96 - PubMed
  4. Proc Natl Acad Sci U S A. 2004 May 11;101(19):7369-74 - PubMed
  5. J Virol. 2006 Mar;80(6):2941-8 - PubMed
  6. Cancer Cell. 2002 Feb;1(1):75-87 - PubMed
  7. Blood. 2009 Aug 20;114(8):1576-84 - PubMed
  8. PLoS One. 2010 Dec 22;5(12):e15688 - PubMed
  9. J Virol. 2004 Jan;78(2):899-911 - PubMed
  10. Adv Virol. 2011;2011:341294 - PubMed
  11. J Exp Med. 2011 Aug 1;208(8):1595-603 - PubMed
  12. Science. 2003 Jun 13;300(5626):1749-51 - PubMed
  13. Vaccine. 2008 Dec 2;26(51):6620-9 - PubMed
  14. Semin Hematol. 2003 Oct;40(4):274-80 - PubMed
  15. Br J Haematol. 2008 Oct;143(2):153-68 - PubMed
  16. Retrovirology. 2004 Oct 11;1:32 - PubMed
  17. Cancer Cell. 2010 Oct 19;18(4):353-66 - PubMed
  18. EMBO Mol Med. 2011 Feb;3(2):89-101 - PubMed
  19. Nature. 2001 Feb 15;409(6822):860-921 - PubMed
  20. J Exp Med. 2011 Apr 11;208(4):653-61 - PubMed
  21. Ann Med. 2004;36(7):492-503 - PubMed
  22. Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15166-71 - PubMed
  23. Science. 2003 Feb 7;299(5608):887-90 - PubMed
  24. Br J Haematol. 2007 Jul;138(2):169-75 - PubMed
  25. Adv Cancer Res. 2003;88:53-99 - PubMed
  26. Leukemia. 2007 Mar;21(3):462-71 - PubMed

Publication Types

Grant support