Display options
Share it on

PLoS One. 2012;7(6):e40194. doi: 10.1371/journal.pone.0040194. Epub 2012 Jun 28.

Microarray-based sketches of the HERV transcriptome landscape.

PloS one

Philippe Pérot, Nathalie Mugnier, Cécile Montgiraud, Juliette Gimenez, Magali Jaillard, Bertrand Bonnaud, François Mallet

Affiliations

  1. Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Lyon, France.

PMID: 22761958 PMCID: PMC3386233 DOI: 10.1371/journal.pone.0040194

Abstract

Human endogenous retroviruses (HERVs) are spread throughout the genome and their long terminal repeats (LTRs) constitute a wide collection of putative regulatory sequences. Phylogenetic similarities and the profusion of integration sites, two inherent characteristics of transposable elements, make it difficult to study individual locus expression in a large-scale approach, and historically apart from some placental and testis-regulated elements, it was generally accepted that HERVs are silent due to epigenetic control. Herein, we have introduced a generic method aiming to optimally characterize individual loci associated with 25-mer probes by minimizing cross-hybridization risks. We therefore set up a microarray dedicated to a collection of 5,573 HERVs that can reasonably be assigned to a unique genomic position. We obtained a first view of the HERV transcriptome by using a composite panel of 40 normal and 39 tumor samples. The experiment showed that almost one third of the HERV repertoire is indeed transcribed. The HERV transcriptome follows tropism rules, is sensitive to the state of differentiation and, unexpectedly, seems not to correlate with the age of the HERV families. The probeset definition within the U3 and U5 regions was used to assign a function to some LTRs (i.e. promoter or polyA) and revealed that (i) autonomous active LTRs are broadly subjected to operational determinism (ii) the cellular gene density is substantially higher in the surrounding environment of active LTRs compared to silent LTRs and (iii) the configuration of neighboring cellular genes differs between active and silent LTRs, showing an approximately 8 kb zone upstream of promoter LTRs characterized by a drastic reduction in sense cellular genes. These gathered observations are discussed in terms of virus/host adaptive strategies, and together with the methods and tools developed for this purpose, this work paves the way for further HERV transcriptome projects.

References

  1. Genomics. 1999 Aug 1;59(3):255-63 - PubMed
  2. Nature. 2000 Feb 17;403(6771):785-9 - PubMed
  3. J Virol. 2003 Oct;77(19):10414-22 - PubMed
  4. Biol Reprod. 2004 Mar;70(3):694-701 - PubMed
  5. Annu Rev Genet. 2008;42:709-32 - PubMed
  6. J Virol. 2004 Nov;78(22):12157-68 - PubMed
  7. BMC Genomics. 2008 Jul 29;9:354 - PubMed
  8. Bioinformatics. 2008 Jul 15;24(14):1563-7 - PubMed
  9. Genetics. 2005 Nov;171(3):1183-94 - PubMed
  10. J Virol. 2006 Nov;80(21):10752-62 - PubMed
  11. Biostatistics. 2007 Jan;8(1):118-27 - PubMed
  12. Transplant Proc. 1999 Feb-Mar;31(1-2):913-4 - PubMed
  13. Nucleic Acids Res. 2006 May 12;34(9):e67 - PubMed
  14. Nucleic Acids Res. 2002 Jan 1;30(1):205-6 - PubMed
  15. Genomics. 2004 Dec;84(6):982-90 - PubMed
  16. Nature. 2007 Jun 14;447(7146):799-816 - PubMed
  17. Genome Biol. 2006;7(9):R86 - PubMed
  18. Int J Cancer. 2007 Oct 1;121(7):1417-23 - PubMed
  19. Nucleic Acids Res. 2007;35(14):4743-54 - PubMed
  20. Nucleic Acids Res. 2011 Nov 1;39(20):8728-39 - PubMed
  21. Proc Natl Acad Sci U S A. 2004 Oct 5;101 Suppl 2:14572-9 - PubMed
  22. Hum Mol Genet. 1998 Jan;7(1):1-11 - PubMed
  23. J Virol. 2007 Sep;81(17):9437-42 - PubMed
  24. Nucleic Acids Res. 2009 Jan;37(Database issue):D686-9 - PubMed
  25. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10254-60 - PubMed
  26. J Mol Med (Berl). 2007 Jan;85(1):23-38 - PubMed
  27. Biostatistics. 2003 Apr;4(2):249-64 - PubMed
  28. J Rheumatol. 2006 Jan;33(1):16-23 - PubMed
  29. J Virol. 2010 Nov;84(22):11981-93 - PubMed
  30. Scand J Clin Lab Invest Suppl. 2010;242:6-14 - PubMed
  31. Biochem Biophys Res Commun. 2009 May 1;382(2):468-72 - PubMed
  32. Exp Cell Res. 2006 Apr 15;312(7):1011-20 - PubMed
  33. Biol Reprod. 1994 Jul;51(1):152-7 - PubMed
  34. Genome Res. 2009 Aug;19(8):1419-28 - PubMed
  35. Nucleic Acids Res. 1988 Sep 12;16(17):8261-76 - PubMed
  36. J Virol Methods. 2006 Sep;136(1-2):83-92 - PubMed
  37. Cancer Res. 2005 May 15;65(10):4172-80 - PubMed
  38. Genome Res. 2006 Jan;16(1):55-65 - PubMed
  39. J Virol. 2004 Oct;78(19):10310-9 - PubMed
  40. J Gen Virol. 2010 Jun;91(Pt 6):1494-502 - PubMed
  41. Gene. 2006 Feb 1;366(2):335-42 - PubMed
  42. Trends Genet. 2003 Oct;19(10):530-6 - PubMed
  43. Mol Biol Evol. 2002 Apr;19(4):526-33 - PubMed
  44. Virology. 1993 Feb;192(2):501-11 - PubMed
  45. Dev Cell. 2004 Oct;7(4):597-606 - PubMed
  46. Annu Rev Genomics Hum Genet. 2006;7:149-73 - PubMed
  47. Cell Mol Life Sci. 2006 Aug;63(16):1906-11 - PubMed
  48. Oncogene. 2000 Sep 7;19(38):4328-36 - PubMed
  49. J Virol. 1997 Jun;71(6):4581-8 - PubMed
  50. Nucleic Acids Res. 2006 Mar 22;34(6):e46 - PubMed
  51. Cancer Epidemiol Biomarkers Prev. 1999 Apr;8(4 Pt 1):293-6 - PubMed
  52. BMC Bioinformatics. 2007 May 03;8 Suppl 2:S11 - PubMed
  53. Genome Res. 2006 Jan;16(1):1-10 - PubMed
  54. PLoS Genet. 2007 Jan 12;3(1):e10 - PubMed
  55. J Virol. 2007 Jun;81(11):5607-16 - PubMed
  56. Nat Genet. 2001 Dec;29(4):487-9 - PubMed
  57. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):13013-8 - PubMed
  58. Genome Biol. 2004;5(10):R80 - PubMed
  59. Leuk Res. 2010 Sep;34(9):1195-202 - PubMed
  60. Nat Protoc. 2006;1(6):2831-8 - PubMed
  61. J Virol. 1995 Jan;69(1):141-9 - PubMed
  62. J Biol Chem. 2001 Jan 19;276(3):1896-903 - PubMed
  63. Genome Biol Evol. 2011;3:259-71 - PubMed
  64. Nucleic Acids Res. 2010 Apr;38(7):2229-46 - PubMed
  65. Gene. 2009 Dec 15;448(2):105-14 - PubMed
  66. Nat Genet. 2009 May;41(5):563-71 - PubMed
  67. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12841-6 - PubMed
  68. J Gen Virol. 1983 Dec;64 ( Pt 12):2549-59 - PubMed
  69. Science. 2001 Feb 16;291(5507):1304-51 - PubMed
  70. Carcinogenesis. 1997 Jun;18(6):1215-23 - PubMed
  71. Nat Genet. 1998 Jul;19(3):233-40 - PubMed
  72. BMC Genomics. 2011 Jan 12;12:22 - PubMed
  73. Genetica. 1999;107(1-3):209-38 - PubMed
  74. Retrovirology. 2005 Mar 14;2:19 - PubMed
  75. Clin Cancer Res. 2002 Jun;8(6):1800-7 - PubMed
  76. Virus Res. 2004 Aug;104(1):11-6 - PubMed
  77. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 - PubMed
  78. Nature. 2001 Feb 15;409(6822):860-921 - PubMed
  79. Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1731-6 - PubMed
  80. PLoS One. 2012;7(1):e29950 - PubMed
  81. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 - PubMed
  82. Prostate. 2001 Apr;47(1):1-13 - PubMed
  83. Retrovirology. 2007 Jun 06;4:39 - PubMed
  84. J Virol. 1995 Jan;69(1):414-21 - PubMed
  85. Cancer Immun. 2004 Feb 11;4:2 - PubMed
  86. Curr Opin Genet Dev. 1999 Dec;9(6):657-63 - PubMed
  87. Biol Reprod. 2003 Jul;69(1):286-93 - PubMed
  88. DNA Res. 2009 Aug;16(4):195-211 - PubMed
  89. J Virol. 2005 Jan;79(1):341-52 - PubMed
  90. Nature. 1984 Jan 19-25;307(5948):241-5 - PubMed
  91. J Biol Chem. 1993 Jan 25;268(3):2260-7 - PubMed
  92. Cancer. 2003 Jul 1;98(1):187-97 - PubMed
  93. J Virol. 2009 Jun;83(12):6098-105 - PubMed
  94. Virology. 1993 Sep;196(1):349-53 - PubMed
  95. J Virol. 1999 Feb;73(2):1175-85 - PubMed
  96. Nature. 1980 Apr 17;284(5757):601-3 - PubMed
  97. Curr Opin Genet Dev. 2001 Dec;11(6):673-80 - PubMed
  98. J Virol Methods. 2005 Oct;129(1):16-30 - PubMed
  99. Nature. 2002 Dec 5;420(6915):520-62 - PubMed

MeSH terms

Publication Types