Display options
Share it on

Front Genet. 2012 Nov 21;3:248. doi: 10.3389/fgene.2012.00248. eCollection 2012.

Impact of the Interaction between 3'-UTR SNPs and microRNA on the Expression of Human Xenobiotic Metabolism Enzyme and Transporter Genes.

Frontiers in genetics

Rongrong Wei, Fan Yang, Thomas J Urban, Lang Li, Naga Chalasani, David A Flockhart, Wanqing Liu

Affiliations

  1. Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University West Lafayette, IN, USA.

PMID: 23181071 PMCID: PMC3502871 DOI: 10.3389/fgene.2012.00248

Abstract

Genetic variation in the expression of human xenobiotic metabolism enzymes and transporters (XMETs) leads to inter-individual variability in metabolism of therapeutic agents as well as differed susceptibility to various diseases. Recent expression quantitative traits loci (eQTL) mapping in a few human cells/tissues have identified a number of single nucleotide polymorphisms (SNPs) significantly associated with mRNA expression of many XMET genes. These eQTLs are therefore important candidate markers for pharmacogenetic studies. However, questions remain about whether these SNPs are causative and in what mechanism these SNPs may function. Given the important role of microRNAs (miRs) in gene transcription regulation, we hypothesize that those eQTLs or their proxies in strong linkage disequilibrium (LD) altering miR targeting are likely causative SNPs affecting gene expression. The aim of this study is to identify eQTLs potentially regulating major XMETs via interference with miR targeting. To this end, we performed a genome-wide screening for eQTLs for 409 genes encoding major drug metabolism enzymes, transporters and transcription factors, in publically available eQTL datasets generated from the HapMap lymphoblastoid cell lines and human liver and brain tissue. As a result, 308 eQTLs significantly (p < 10(-5)) associated with mRNA expression of 101 genes were identified. We further identified 7,869 SNPs in strong LD (r(2) ≥ 0.8) with these eQTLs using the 1,000 Genome SNP data. Among these 8,177 SNPs, 27 are located in the 3'-UTR of 14 genes. Using two algorithms predicting miR-SNP interaction, we found that almost all these SNPs (26 out of 27) were predicted to create, abolish, or change the target site for miRs in both algorithms. Many of these miRs were also expressed in the same tissue that the eQTL were identified. Our study provides a strong rationale for continued investigation for the functions of these eQTLs in pharmacogenetic settings.

Keywords: 3′-UTR; eQTL; microRNA; pharmacogenetics; xenobiotic metabolism enzyme and transporter

References

  1. Nat Genet. 2005 May;37(5):495-500 - PubMed
  2. J Biol Chem. 2010 Feb 12;285(7):4415-22 - PubMed
  3. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8 - PubMed
  4. Cancer Res. 2006 Sep 15;66(18):9090-8 - PubMed
  5. Cancer Cell. 2011 Feb 15;19(2):232-43 - PubMed
  6. PLoS Genet. 2010 May 13;6(5):e1000952 - PubMed
  7. Pharmacogenet Genomics. 2013 Aug;23(8):383-94 - PubMed
  8. Cancer Res. 2008 Oct 15;68(20):8535-40 - PubMed
  9. PLoS Biol. 2008 May 6;6(5):e107 - PubMed
  10. Hum Mol Genet. 2009 Oct 1;18(19):3758-68 - PubMed
  11. Nature. 2005 Feb 17;433(7027):769-73 - PubMed
  12. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3300-5 - PubMed
  13. Nat Genet. 2012 Apr 15;44(5):491-501 - PubMed
  14. Hum Mutat. 2010 Nov;31(11):1223-32 - PubMed
  15. J Neurochem. 2005 Dec;95(6):1766-76 - PubMed
  16. PLoS One. 2012;7(4):e35345 - PubMed
  17. Genome Res. 2009 Jan;19(1):92-105 - PubMed
  18. Biochem Biophys Res Commun. 2004 Sep 3;321(4):870-8 - PubMed
  19. Expert Opin Drug Metab Toxicol. 2010 May;6(5):543-54 - PubMed
  20. Mol Cell. 2007 Jul 6;27(1):91-105 - PubMed
  21. PLoS Genet. 2011 Oct;7(10):e1002327 - PubMed
  22. Nucleic Acids Res. 2007;35(13):4535-41 - PubMed
  23. Nature. 2010 Apr 1;464(7289):773-7 - PubMed
  24. Curr Drug Metab. 2008 Feb;9(2):129-43 - PubMed
  25. Nat Genet. 2006 Dec;38(12):1452-6 - PubMed
  26. Am J Respir Crit Care Med. 2009 Apr 1;179(7):601-7 - PubMed
  27. Drug Metab Dispos. 2012 Apr;40(4):694-705 - PubMed
  28. Arthritis Res Ther. 2011 Jan 31;13(1):R11 - PubMed
  29. Arch Toxicol. 2012 Sep;86(9):1369-78 - PubMed
  30. Cell. 2005 Jan 14;120(1):15-20 - PubMed
  31. Genome Res. 2012 Jan;22(1):1-8 - PubMed
  32. PLoS Biol. 2005 Mar;3(3):e85 - PubMed
  33. Comp Funct Genomics. 2011;2011:910769 - PubMed
  34. Nature. 2004 Sep 16;431(7006):350-5 - PubMed
  35. J Cell Physiol. 2007 Feb;210(2):279-89 - PubMed
  36. Br J Pharmacol. 2003 Aug;139(8):1373-82 - PubMed
  37. Science. 2005 Oct 14;310(5746):317-20 - PubMed
  38. Toxicol Sci. 2011 Sep;123(1):1-14 - PubMed
  39. Clin Cancer Res. 2007 Dec 1;13(23):7207-16 - PubMed
  40. Hum Mutat. 2012 Jan;33(1):254-63 - PubMed
  41. Ginekol Pol. 2011 Dec;82(12):925-32 - PubMed
  42. Am J Epidemiol. 2008 Apr 1;167(7):759-74 - PubMed
  43. Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13513-8 - PubMed
  44. Am J Hum Genet. 2007 Oct;81(4):829-34 - PubMed
  45. Curr Drug Metab. 2009 Oct;10(8):914-31 - PubMed
  46. Cell. 2004 Jan 23;116(2):281-97 - PubMed
  47. Proc Natl Acad Sci U S A. 2010 May 18;107(20):9287-92 - PubMed
  48. Nucleic Acids Res. 2007 Jan;35(Database issue):D51-4 - PubMed
  49. Bone Marrow Transplant. 2011 Aug;46(8):1113-7 - PubMed
  50. J Hypertens. 2008 Jul;26(7):1343-52 - PubMed

Publication Types