Display options
Share it on

Front Oncol. 2012 Nov 15;2:165. doi: 10.3389/fonc.2012.00165. eCollection 2012.

Radiation-induced changes in microcirculation and interstitial fluid pressure affecting the delivery of macromolecules and nanotherapeutics to tumors.

Frontiers in oncology

Gabriele Multhoff, Peter Vaupel

Affiliations

  1. Department of Radiotherapy and Radiooncology, Klinikum rechts der Isar, Technical University of Munich Munich, Germany ; Helmholtz Zentrum München (HMGU), CCG - Innate Immunity in Tumor Biology Munich, Germany.

PMID: 23162794 PMCID: PMC3498626 DOI: 10.3389/fonc.2012.00165

Abstract

The immature, chaotic microvasculature of most solid tumors can present a significant impediment to blood-borne delivery, uneven distribution, and compromised penetration of macromolecular anticancer drugs and diagnostic agents from tumor microvessels across the interstitial space to cancer cells. To reach viable tumor cells in relevant concentrations, macromolecular agents are confronted with several barriers to vascular, transvascular, and interstitial transport. Amongst those (1) heterogeneous and poor blood supply, (2) distinctly reduced or even abolished hydrostatic and oncotic pressure gradients across the microvessel wall abrogating the convective transport from the vessel lumen into the interstitial space (impairment of transvascular transport), and (3) impediment of convective transport within the interstitial compartment due to elevated interstitial fluid pressure (IFP) (resulting from hyperpermeable blood vessels coupled with non-functional lymphatics) and a dense structure of the interstitial matrix are the major mechanisms hindering drug delivery. Upon irradiation, changes in these barrier functions are inconclusive so far. Alterations in vascular transport properties following fractionated radiation up to 40 Gy are quite inconsistent in terms of direction, extent, and time course. Total doses above 45 Gy can damage tumor microvessels, additionally impeding vascular delivery. Vascular permeability for macromolecules might be enhanced up to a total dose of 45 Gy. However, this effect is counteracted/abolished by the elevated IFP in solid tumors. When assessing IFP during fractionated radiotherapy in patient tumors, inconsistent alterations have been observed, both in direction and extent. From these data it is concluded that modulations in vascular, transvascular, and interstitial transport by irradiation of solid tumors are rather unclear so far. Translation of experimental data into the clinical setting thus needs to be undertaken with especial care.

Keywords: intratumor pharmacokinetics; irradiation; macromolecular agents; transport barriers; tumor interstitial fluid pressure; tumor microcirculation

References

  1. Acta Anat (Basel). 1994;150(1):80-5 - PubMed
  2. J Orthop Res. 2008 Nov;26(11):1520-5 - PubMed
  3. Clin Cancer Res. 2009 Oct 1;15(19):6201-7 - PubMed
  4. Nat Rev Cancer. 2004 Oct;4(10):806-13 - PubMed
  5. Pathol Annu. 1988;23 Pt 1:297-330 - PubMed
  6. Cancer Res. 2001 Sep 1;61(17):6400-5 - PubMed
  7. Adv Exp Med Biol. 1984;180:773-82 - PubMed
  8. Cancer Res. 1990 Feb 1;50(3 Suppl):814s-819s - PubMed
  9. Mol Cancer Res. 2006 Feb;4(2):61-70 - PubMed
  10. Future Oncol. 2008 Dec;4(6):793-802 - PubMed
  11. Clin Cancer Res. 2003 Nov 15;9(15):5508-13 - PubMed
  12. Annu Rev Chem Biomol Eng. 2011;2:281-98 - PubMed
  13. Nat Rev Clin Oncol. 2010 Nov;7(11):653-64 - PubMed
  14. Cancer Invest. 1989;7(3):287-94 - PubMed
  15. Clin Cancer Res. 2005 Mar 15;11(6):2389-97 - PubMed
  16. Cancer Res. 1989 Dec 1;49(23):6449-65 - PubMed
  17. Cancer Res. 1996 Mar 1;56(5):964-68 - PubMed
  18. Physiol Rev. 2012 Jul;92(3):1005-60 - PubMed
  19. Int J Radiat Oncol Biol Phys. 1999 Dec 1;45(5):1281-8 - PubMed
  20. AJR Am J Roentgenol. 2001 Oct;177(4):747-53 - PubMed
  21. Cancer Res. 1991 Dec 15;51(24):6695-8 - PubMed
  22. Cancer Res. 2000 Aug 1;60(15):4251-5 - PubMed
  23. Clin Cancer Res. 2010 Feb 1;16(3):936-45 - PubMed
  24. Neoplasia. 2009 Nov;11(11):1243-51 - PubMed
  25. J Cell Biochem. 2007 Jul 1;101(4):937-49 - PubMed
  26. J Natl Cancer Inst. 2012 Jun 20;104(12):899-905 - PubMed
  27. Am J Pathol. 1982 Jan;106(1):47-62 - PubMed
  28. Cancer Metastasis Rev. 1987;6(4):559-93 - PubMed
  29. Cancer Res. 2000 May 1;60(9):2497-503 - PubMed
  30. Int J Radiat Oncol Biol Phys. 1999 Jul 1;44(4):895-904 - PubMed
  31. Semin Radiat Oncol. 2004 Jul;14(3):249-58 - PubMed

Publication Types