Display options
Share it on

Daru. 2013 May 01;21(1):34. doi: 10.1186/2008-2231-21-34.

Synthesis and In vitro cytotoxic activity evaluation of (E)-16-(substituted benzylidene) derivatives of dehydroepiandrosterone.

Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences

Mohsen Vosooghi, Hoda Yahyavi, Kouros Divsalar, Hashem Shamsa, Asma Kheirollahi, Maliheh Safavi, Sussan Kabudanian Ardestani, Sareh Sadeghi-Neshat, Negar Mohammadhosseini, Najmeh Edraki, Mehdi Khoshneviszadeh, Abbas Shafiee, Alireza Foroumadi

Affiliations

  1. Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran. [email protected].

PMID: 23635011 PMCID: PMC3673839 DOI: 10.1186/2008-2231-21-34

Abstract

BACKGROUND AND THE PURPOSE OF THE STUDY: Modified androsterone derivatives are class of steroidal compounds with potential anticancer properties. Various steroidal derivatives containing substitution at position 16 have shown diversified pharmacological activities. In the present study, a new series of cytotoxic 16-(substituted benzylidene) derivatives of dehydroepiandrosterone (DHEA) were synthesized and evaluated against three different cancer cell lines.

METHODS: The cytotoxic 16-(substituted benzylidene) derivatives of DHEA were synthesized via aldol condensation of DHEA with corresponding benzaldehyde derivatives. The cytotoxic activity of synthesized derivatives was evaluated against three different cancer cells including KB, T47D and SK-N-MC cell lines by MTT reduction colorimetric assay.

RESULTS: The results indicated that 16-(substituted benzylidene) derivatives of DHEA could be served as a potent anti-cancer agent. The 3-cholro benzylidene derivatives of DHEA was the most potent synthesized derivative especially against KB and T47D cell lines (IC50 values were 0.6 and 1.7 μM; respectively).

CONCLUSION: The cytotoxic potential of novel benzylidene derivatives of DHEA is mainly attributed to the position and nature of the substituted group on the benzylidene pendant.

References

  1. Cardiovasc Res. 2002 Feb 15;53(3):688-708 - PubMed
  2. Steroids. 2007 Jun;72(6-7):573-9 - PubMed
  3. Life Sci. 2002 Mar 15;70(17):1979-88 - PubMed
  4. Bioorg Chem. 2012 Dec;45:36-40 - PubMed
  5. Steroids. 2002 Nov;67(12):953-66 - PubMed
  6. Daru. 2013 Apr 12;21(1):31 - PubMed
  7. Psychoneuroendocrinology. 2009 Dec;34 Suppl 1:S169-77 - PubMed
  8. Steroids. 2011 Dec 20;76(14):1615-20 - PubMed
  9. Pharm Biol. 2012 Dec;50(12):1551-60 - PubMed
  10. Daru. 2012 Oct 22;20(1):64 - PubMed
  11. Cancer Res. 2005 May 1;65(9):3911-9 - PubMed
  12. Cancer Res. 2006 Feb 15;66(4):2476-82 - PubMed
  13. Steroids. 2012 Sep;77(11):1113-22 - PubMed
  14. Steroids. 2008 Mar;73(3):370-4 - PubMed
  15. Steroids. 2012 Oct;77(12):1267-90 - PubMed
  16. Arch Pharm Res. 2012 Dec;35(12):2117-25 - PubMed
  17. Daru. 2012 Dec 26;20(1):100 - PubMed
  18. J Steroid Biochem Mol Biol. 2000 Jul-Aug;73(5):225-35 - PubMed
  19. Chem Pharm Bull (Tokyo). 2011;59(3):327-31 - PubMed
  20. Eur J Med Chem. 2012 Dec;58:573-80 - PubMed
  21. Steroids. 2010 Dec;75(12):859-69 - PubMed
  22. Arch Pharm Res. 2012 Sep;35(9):1573-82 - PubMed
  23. J Immunol Methods. 1983 Dec 16;65(1-2):55-63 - PubMed
  24. Steroids. 2007 Jan;72(1):71-84 - PubMed
  25. Autoimmun Rev. 2009 Mar;8(5):369-72 - PubMed
  26. Steroids. 2012 May;77(6):621-9 - PubMed
  27. Arzneimittelforschung. 2004;54(9):551-6 - PubMed
  28. J Steroid Biochem Mol Biol. 2006 Apr;99(1):50-8 - PubMed
  29. J Steroid Biochem Mol Biol. 2012 Oct;132(1-2):93-104 - PubMed
  30. Bioorg Med Chem Lett. 2010 Dec 15;20(24):7372-5 - PubMed
  31. Steroids. 2011 Nov;76(12):1358-62 - PubMed
  32. Steroids. 2007 Jun;72(6-7):475-508 - PubMed
  33. Daru. 2013 Feb 27;21(1):15 - PubMed
  34. Eur J Med Chem. 2012 Apr;50:113-23 - PubMed
  35. Steroids. 2012 Apr;77(5):558-65 - PubMed

Publication Types