Display options
Share it on

AMB Express. 2013 May 21;3:28. doi: 10.1186/2191-0855-3-28. eCollection 2013.

Biotransformation of caffeoyl quinic acids from green coffee extracts by Lactobacillus johnsonii NCC 533.

AMB Express

Rachid Bel-Rhlid, Dinesh Thapa, Karin Kraehenbuehl, Carl Erik Hansen, Lutz Fischer

Affiliations

  1. Nestec Ltd, Nestlé Research Centre, Vers-chez-les-Blanc, P.O. Box 44, Lausanne 26, 1000, Switzerland.
  2. Rowett Institute of Nutrition and Health Gut, Health/Microbial Biochemistry, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen, AB21 9SB, Scotland.
  3. Institute of Food Science and Biotechnology, Faculty of Natural Sciences, University of Hohenheim (Stuttgart), Garbenstr. 25, Stuttgart, D-70593, Germany.

PMID: 23692950 PMCID: PMC3679781 DOI: 10.1186/2191-0855-3-28

Abstract

The potential of Lactobacillus johnsonii NCC 533 to metabolize chlorogenic acids from green coffee extract was investigated. Two enzymes, an esterase and a hydroxycinnamate decarboxylase (HCD), were involved in this biotransformation. The complete hydrolysis of 5-caffeoylquinic acid (5-CQA) into caffeic acid (CA) by L. johnsonii esterase occurred during the first 16 h of reaction time. No dihydrocaffeic acid was identified in the reaction mixture. The decarboxylation of CA into 4-vinylcatechol (4-VC) started only when the maximum concentration of CA was reached (10 μmol/ml). CA was completely transformed into 4-VC after 48 h of incubation. No 4-vinylphenol or other derivatives could be identified in the reaction media. In this study we demonstrate the capability of L. johnsonii to transform chlorogenic acids from green coffee extract into 4-VC in two steps one pot reaction. Thus, the enzymatic potential of certain lactobacilli might be explored to generate flavor compounds from plant polyphenols.

Keywords: 4-vinylcatechol; Chlorogenic acid; Decarboxylase; Esterase; L. johnsonii

References

  1. J Nat Prod. 2001 Nov;64(11):1408-14 - PubMed
  2. J Nutr. 2007 Oct;137(10):2196-201 - PubMed
  3. Biosci Biotechnol Biochem. 2001 Dec;65(12):2604-12 - PubMed
  4. Appl Environ Microbiol. 2009 Aug;75(15):5018-24 - PubMed
  5. FEMS Microbiol Rev. 1997 Apr;19(4):239-62 - PubMed
  6. J Agric Food Chem. 2009 Sep 9;57(17):7700-5 - PubMed
  7. Enzyme Microb Technol. 2013 Feb 5;52(2):99-104 - PubMed
  8. J Agric Food Chem. 2008 May 14;56(9):3068-72 - PubMed
  9. J Bacteriol. 1994 Oct;176(19):5912-8 - PubMed
  10. Int J Food Microbiol. 2008 Sep 30;127(1-2):6-11 - PubMed
  11. Food Chem. 2011 Sep 1;128(1):62-9 - PubMed
  12. J Bacteriol. 1971 Dec;108(3):996-1000 - PubMed
  13. Appl Environ Microbiol. 2008 Feb;74(4):1284-8 - PubMed
  14. Appl Environ Microbiol. 1998 Apr;64(4):1466-71 - PubMed
  15. Appl Environ Microbiol. 1995 Jan;61(1):326-32 - PubMed
  16. J Bacteriol. 2000 Dec;182(23):6724-31 - PubMed
  17. FEBS Lett. 1993 Aug 23;329(1-2):21-4 - PubMed
  18. J Appl Microbiol. 2001 Jun;90(6):873-81 - PubMed
  19. Appl Environ Microbiol. 2000 Dec;66(12):5322-8 - PubMed
  20. Appl Environ Microbiol. 1999 Nov;65(11):4837-47 - PubMed
  21. J Agric Food Chem. 2007 Mar 7;55(5):1945-54 - PubMed
  22. J Agric Food Chem. 2007 May 16;55(10):4095-102 - PubMed
  23. J Bacteriol. 1990 Oct;172(10):5901-7 - PubMed
  24. J Food Prot. 2007 Nov;70(11):2670-5 - PubMed
  25. J Agric Food Chem. 2009 Jan 28;57(2):490-4 - PubMed
  26. J Appl Microbiol. 2009 May;106(5):1743-51 - PubMed

Publication Types