Display options
Share it on

Int J Genomics. 2013;2013:832756. doi: 10.1155/2013/832756. Epub 2013 May 02.

Comparative genomics of cryptosporidium.

International journal of genomics

Aurélien J Mazurie, João M Alves, Luiz S Ozaki, Shiguo Zhou, David C Schwartz, Gregory A Buck

Affiliations

  1. Department of Microbiology, Montana State University, Bozeman, MT 59717, USA ; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23284-2030, USA.

PMID: 23738321 PMCID: PMC3659464 DOI: 10.1155/2013/832756

Abstract

Until recently, the apicomplexan parasites, Cryptosporidium hominis and C. parvum, were considered the same species. However, the two parasites, now considered distinct species, exhibit significant differences in host range, infectivity, and pathogenicity, and their sequenced genomes exhibit only 95-97% identity. The availability of the complete genome sequences of these organisms provides the potential to identify the genetic variations that are responsible for the phenotypic differences between the two parasites. We compared the genome organization and structure, gene composition, the metabolic and other pathways, and the local sequence identity between the genes of these two Cryptosporidium species. Our observations show that the phenotypic differences between C. hominis and C. parvum are not due to gross genome rearrangements, structural alterations, gene deletions or insertions, metabolic capabilities, or other obvious genomic alterations. Rather, the results indicate that these genomes exhibit a remarkable structural and compositional conservation and suggest that the phenotypic differences observed are due to subtle variations in the sequences of proteins that act at the interface between the parasite and its host.

References

  1. J Mol Biol. 2001 Dec 14;314(5):1041-52 - PubMed
  2. J Bacteriol. 2004 Nov;186(22):7773-82 - PubMed
  3. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7 - PubMed
  4. J Mol Biol. 2004 Jul 16;340(4):783-95 - PubMed
  5. Vet Parasitol. 2004 Dec 9;126(1-2):37-56 - PubMed
  6. Infect Immun. 2006 Jan;74(1):99-107 - PubMed
  7. Appl Environ Microbiol. 2002 Dec;68(12):6321-31 - PubMed
  8. Comput Appl Biosci. 1997 Oct;13(5):555-6 - PubMed
  9. Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15770-5 - PubMed
  10. J Mol Biol. 2001 Jan 19;305(3):567-80 - PubMed
  11. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 - PubMed
  12. Appl Environ Microbiol. 2005 Sep;71(9):5511-22 - PubMed
  13. Anal Chem. 2004 Sep 15;76(18):5293-301 - PubMed
  14. J Comput Biol. 2006 Mar;13(2):442-62 - PubMed
  15. Science. 2005 Jul 1;309(5731):131-3 - PubMed
  16. Nature. 2004 Oct 28;431(7012):1107-12 - PubMed
  17. Science. 2004 Apr 16;304(5669):441-5 - PubMed
  18. J Comput Biol. 1997 Summer;4(2):91-118 - PubMed
  19. Bioinformatics. 2005 May 1;21(9):1846-52 - PubMed
  20. Mol Biol Evol. 2000 Jan;17(1):32-43 - PubMed
  21. Science. 2005 Jul 1;309(5731):134-7 - PubMed
  22. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8 - PubMed
  23. J Eukaryot Microbiol. 2002 Nov-Dec;49(6):433-40 - PubMed
  24. BMC Genomics. 2007 Aug 15;8:278 - PubMed
  25. J Med Microbiol. 2006 Jun;55(Pt 6):703-707 - PubMed
  26. Int J Parasitol. 2005 Oct;35(11-12):1181-90 - PubMed
  27. Nucleic Acids Res. 2009 Jan;37(Database issue):D539-43 - PubMed
  28. Vet J. 2008 Jul;177(1):18-25 - PubMed
  29. Clin Microbiol Rev. 2004 Jan;17(1):72-97 - PubMed
  30. Mol Biochem Parasitol. 2004 Mar;134(1):127-35 - PubMed
  31. Genome Res. 2003 Sep;13(9):2178-89 - PubMed
  32. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D329-31 - PubMed
  33. Mol Biochem Parasitol. 2004 Nov;138(1):97-106 - PubMed
  34. Emerg Infect Dis. 1997 Oct-Dec;3(4):567-73 - PubMed
  35. Trends Biotechnol. 1999 Jul;17(7):297-302 - PubMed

Publication Types

Grant support