Display options
Share it on

IEEE Trans Nucl Sci. 2009 Oct 06;56(5):2659-2671. doi: 10.1109/TNS.2009.2028138.

C-SPECT - a Clinical Cardiac SPECT/Tct Platform: Design Concepts and Performance Potential.

IEEE transactions on nuclear science

Wei Chang, Caesar E Ordonez, Haoning Liang, Yusheng Li, Jingai Liu

Affiliations

  1. Department of Diagnostic Radiology, Rush University Medical Center, Chicago, IL 60612, USA.

PMID: 23885129 PMCID: PMC3718566 DOI: 10.1109/TNS.2009.2028138

Abstract

Because of scarcity of photons emitted from the heart, clinical cardiac SPECT imaging is mainly limited by photon statistics. The sub-optimal detection efficiency of current SPECT systems not only limits the quality of clinical cardiac SPECT imaging but also makes more advanced potential applications difficult to be realized. We propose a high-performance system platform - C-SPECT, which has its sampling geometry optimized for detection of emitted photons in quality and quantity. The C-SPECT has a stationary C-shaped gantry that surrounds the left-front side of a patient's thorax. The stationary C-shaped collimator and detector systems in the gantry provide effective and efficient detection and sampling of photon emission. For cardiac imaging, the C-SPECT platform could achieve 2 to 4 times the system geometric efficiency of conventional SPECT systems at the same sampling resolution. This platform also includes an integrated transmission CT for attenuation correction. The ability of C-SPECT systems to perform sequential high-quality emission and transmission imaging could bring cost-effective high-performance to clinical imaging. In addition, a C-SPECT system could provide high detection efficiency to accommodate fast acquisition rate for gated and dynamic cardiac imaging. This paper describes the design concepts and performance potential of C-SPECT, and illustrates how these concepts can be implemented in a basic system.

Keywords: Cardiovascular system; SPECT; imaging; instrumentation; system analysis and design

References

  1. J Nucl Med. 1989 Apr;30(4):497-507 - PubMed
  2. Invest Radiol. 1991 Jul;26(7):681-8 - PubMed
  3. Phys Med Biol. 1983 Mar;28(3):223-32 - PubMed
  4. J Nucl Med. 2001 Apr;42(4):624-32 - PubMed
  5. Med Phys. 1980 Nov-Dec;7(6):692-702 - PubMed
  6. J Nucl Med. 1994 Aug;35(8):1265-73 - PubMed
  7. Circulation. 1996 Feb 1;93(3):463-73 - PubMed
  8. J Nucl Cardiol. 1999 Jan-Feb;6(1 Pt 1):54-68 - PubMed
  9. J Nucl Cardiol. 2004 Mar-Apr;11(2):229-30 - PubMed
  10. Phys Med Biol. 2008 Feb 21;53(4):953-66 - PubMed
  11. Phys Med Biol. 1992 Mar;37(3):549-62 - PubMed
  12. IEEE Trans Med Imaging. 1994;13(4):601-9 - PubMed
  13. Phys Med Biol. 1995 Jun;40(6):1085-104 - PubMed
  14. Nucl Med Commun. 2005 Jan;26(1):25-30 - PubMed
  15. J Nucl Med. 2003 Feb;44(2):291-315 - PubMed
  16. J Nucl Med. 2006 Apr;47(4):595-602 - PubMed
  17. Med Phys. 1986 Jul-Aug;13(4):484-9 - PubMed
  18. J Nucl Cardiol. 2007 Jul;14(4):501-13 - PubMed
  19. J Nucl Med. 2008 Jul;49(7):1080-9 - PubMed
  20. Phys Rev Lett. 1995 Jul 3;75(1):156-159 - PubMed
  21. Med Phys. 1995 Dec;22(12):2015-24 - PubMed
  22. IEEE Trans Med Imaging. 2008 Jun;27(6):775-88 - PubMed
  23. J Nucl Cardiol. 2002 Jan-Feb;9(1):135-43 - PubMed
  24. J Nucl Med. 2006 Nov;47(11):1884-90 - PubMed
  25. Am J Card Imaging. 1992 Mar;6(1):42-57; discussion 58 - PubMed
  26. J Nucl Med. 1988 Aug;29(8):1398-405 - PubMed
  27. Phys Med Biol. 1992 Mar;37(3):507-34 - PubMed
  28. Eur J Nucl Med. 1998 Jul;25(7):774-87 - PubMed
  29. J Nucl Med. 1994 Jan;35(1):135-40 - PubMed
  30. J Nucl Med. 1991 Dec;32(12):2253-7 - PubMed
  31. J Am Coll Cardiol. 1990 Nov;16(6):855-61 - PubMed
  32. J Nucl Med. 2007 Apr;48(4):661-73 - PubMed
  33. J Nucl Cardiol. 2001 Jul-Aug;8(4):458-65 - PubMed
  34. J Nucl Med. 1992 Oct;33(10):1783-8 - PubMed
  35. J Nucl Cardiol. 1996 Mar-Apr;3(2):130-42 - PubMed
  36. IEEE Trans Med Imaging. 1988;7(4):291-7 - PubMed
  37. J Nucl Med. 1998 Jan;39(1):166-75 - PubMed
  38. Circulation. 1999 Jun 1;99(21):2742-9 - PubMed

Publication Types

Grant support