Display options
Share it on

Nat Chem. 2013 Dec;5(12):1000-5. doi: 10.1038/nchem.1764. Epub 2013 Sep 29.

Pattern transformation with DNA circuits.

Nature chemistry

Steven M Chirieleison, Peter B Allen, Zack B Simpson, Andrew D Ellington, Xi Chen

Affiliations

  1. Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, USA.

PMID: 24256862 PMCID: PMC3970425 DOI: 10.1038/nchem.1764

Abstract

Readily programmable chemical networks are important tools as the scope of chemistry expands from individual molecules to larger molecular systems. Although many complex systems are constructed using conventional organic and inorganic chemistry, the programmability of biological molecules such as nucleic acids allows for precise, high-throughput and automated design, as well as simple, rapid and robust implementation. Here we show that systematic and quantitative control over the diffusivity and reactivity of DNA molecules yields highly programmable chemical reaction networks (CRNs) that execute at the macroscale. In particular, we designed and implemented non-enzymatic DNA circuits capable of performing pattern-transformation algorithms such as edge detection. We also showed that it is possible to fine-tune and multiplex such circuits. We believe these strategies will provide programmable platforms on which to prototype CRNs, discover bottom-up construction principles and generate patterns in materials.

References

  1. Mol Syst Biol. 2011 Feb 1;7:465 - PubMed
  2. ACS Nano. 2013 Jan 22;7(1):27-34 - PubMed
  3. Nucleic Acids Res. 2011 Sep 1;39(16):e110 - PubMed
  4. J Comput Chem. 2011 Feb;32(3):439-52 - PubMed
  5. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):10983-7 - PubMed
  6. Nature. 2012 May 30;485(7400):623-6 - PubMed
  7. Mol Syst Biol. 2006;2:68 - PubMed
  8. Nat Biotechnol. 2003 Sep;21(9):1069-74 - PubMed
  9. Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5393-8 - PubMed
  10. Science. 2002 Jun 14;296(5575):2009-12 - PubMed
  11. Nature. 2011 Jul 20;475(7356):368-72 - PubMed
  12. Nature. 2000 Jul 27;406(6794):389-91 - PubMed
  13. Cell. 2009 Jun 26;137(7):1272-81 - PubMed
  14. Science. 2007 Nov 16;318(5853):1121-5 - PubMed
  15. Nature. 2010 May 13;465(7295):202-5 - PubMed
  16. Nature. 1970 Feb 7;225(5232):535-7 - PubMed
  17. Angew Chem Int Ed Engl. 2009;48(1):60-103 - PubMed
  18. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 2):046112 - PubMed
  19. Chem Soc Rev. 2012 Mar 21;41(6):2003-24 - PubMed
  20. Science. 2011 Mar 11;331(6022):1309-12 - PubMed
  21. Science. 2011 Jun 3;332(6034):1196-201 - PubMed
  22. Science. 2010 Sep 24;329(5999):1616-20 - PubMed
  23. Nature. 2010 May 13;465(7295):206-10 - PubMed
  24. Science. 2006 Dec 8;314(5805):1585-8 - PubMed
  25. Chem Soc Rev. 2011 Dec;40(12):5910-21 - PubMed
  26. Chem Rev. 2011 Jun 8;111(6):3669-712 - PubMed
  27. Nat Nanotechnol. 2011 Nov 06;6(12):763-72 - PubMed
  28. Science. 2009 Apr 3;324(5923):67-71 - PubMed
  29. Nature. 2008 Jan 17;451(7176):318-22 - PubMed
  30. Science. 2012 Nov 30;338(6111):1177-83 - PubMed
  31. Nature. 2009 Dec 10;462(7274):736-8 - PubMed
  32. Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5386-91 - PubMed
  33. Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):E3212-20 - PubMed
  34. Angew Chem Int Ed Engl. 2002 Mar 15;41(6):898-952 - PubMed
  35. Chemistry. 2009;15(7):1765-75 - PubMed
  36. Nature. 2005 Apr 28;434(7037):1130-4 - PubMed
  37. Chem Rev. 2005 Apr;105(4):1025-102 - PubMed

Substances

MeSH terms

Publication Types

Grant support