Display options
Share it on

Angew Chem Int Ed Engl. 2013 Dec 16;52(51):13808-12. doi: 10.1002/anie.201308245. Epub 2013 Nov 26.

Stabilization of copper catalysts for liquid-phase reactions by atomic layer deposition.

Angewandte Chemie (International ed. in English)

Brandon J O'Neill, David H K Jackson, Anthony J Crisci, Carrie A Farberow, Fengyuan Shi, Ana C Alba-Rubio, Junling Lu, Paul J Dietrich, Xiangkui Gu, Christopher L Marshall, Peter C Stair, Jeffrey W Elam, Jeffrey T Miller, Fabio H Ribeiro, Paul M Voyles, Jeffrey Greeley, Manos Mavrikakis, Susannah L Scott, Thomas F Kuech, James A Dumesic

Affiliations

  1. Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI 53706 (USA).

PMID: 24282166 DOI: 10.1002/anie.201308245

Abstract

Atomic layer deposition (ALD) of an alumina overcoat can stabilize a base metal catalyst (e.g., copper) for liquid-phase catalytic reactions (e.g., hydrogenation of biomass-derived furfural in alcoholic solvents or water), thereby eliminating the deactivation of conventional catalysts by sintering and leaching. This method of catalyst stabilization alleviates the need to employ precious metals (e.g., platinum) in liquid-phase catalytic processing. The alumina overcoat initially covers the catalyst surface completely. By using solid state NMR spectroscopy, X-ray diffraction, and electron microscopy, it was shown that high temperature treatment opens porosity in the overcoat by forming crystallites of γ-Al2 O3 . Infrared spectroscopic measurements and scanning tunneling microscopy studies of trimethylaluminum ALD on copper show that the remarkable stability imparted to the nanoparticles arises from selective armoring of under-coordinated copper atoms on the nanoparticle surface.

Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: atomic layer deposition; biomass; catalyst stability; copper; hydrogenation

Publication Types