Display options
Share it on

Onco Targets Ther. 2013 Oct 21;6:1481-91. doi: 10.2147/OTT.S51887. eCollection 2013.

Serum proteomic study on EGFR-TKIs target treatment for patients with NSCLC.

OncoTargets and therapy

Xuan Wu, Wenhua Liang, Xue Hou, Zhong Lin, Hongyun Zhao, Yan Huang, Wenfeng Fang, Yuanyuan Zhao, Jingxun Wu, Yunpeng Yang, Chong Xue, Zhihuang Hu, Jing Zhang, Jianwei Zhang, Yuxiang Ma, Ting Zhou, Tao Qin, Li Zhang

Affiliations

  1. State Key Laboratory of Oncology in South China, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.

PMID: 24204163 PMCID: PMC3818102 DOI: 10.2147/OTT.S51887

Abstract

BACKGROUND: Although epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are widely used for EGFR mutated non-small-cell lung cancer (NSCLC) patients, tumor sample availability and heterogeneity of the tumor remain challenging for physicians' selection of these patients. Here, we developed a serum proteomic classifier based on matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) to predict the clinical outcome of patients treated with EGFR-TKIs.

METHOD: A total of 68 patients were included in this study. All patients received EGFR-TKIs as second or third line treatment and blood samples were collected before treatment. Using magnetic bead assisted serum peptide capture coupled to MALDI-TOF-MS, pretreatment serum from 24 NSCLC patients was analyzed to develop a proteomic classifier (training set). In a blinded test set with 44 patients, each sample was classified into "good" or "poor" groups using this classifier. Survival analysis of each group was done based on this classification.

RESULT: A 3-peptide proteomic classifier was developed from the training set. In the testing set, the classifier was able to distinguish patients of "good" or "poor" outcomes with 93% accuracy, sensitivity, and specificity. The overall survival and progression free survival of the predicted good group were found to be significantly longer than the poor group, not only in the whole population but also in certain subgroups, such as pathological adenocarcinoma and nonsmokers. With respect to the tumor samples available for EGFR mutation detection, all eight EGFR mutant tumors and three of the 12 wild type EGFR tumors were classified as good while nine of the 12 wild type EGFR tumors were classified as poor.

CONCLUSION: The current study has shown that a proteomic classifier can predict the outcome of patients treated with EGFR-TKIs and may aid in patient selection in the absence of available tumor tissue. Further studies are necessary to confirm these findings.

Keywords: matrix assisted laser desorption ionization time of flight mass spectrometry; non-small-cell lung cancer; proteomic classifier; survival

References

  1. Proteomics. 2006 May;6(9):2895-902 - PubMed
  2. Oncologist. 2012;17(7):978-85 - PubMed
  3. J Clin Invest. 2006 Jan;116(1):271-84 - PubMed
  4. Lancet Oncol. 2012 May;13(5):466-75 - PubMed
  5. Lancet. 2005 Oct 29-Nov 4;366(9496):1527-37 - PubMed
  6. Lancet Oncol. 2008 Oct;9(10):962-72 - PubMed
  7. J Natl Cancer Inst. 2000 Feb 2;92(3):205-16 - PubMed
  8. Lancet. 2008 Nov 22;372(9652):1809-18 - PubMed
  9. N Engl J Med. 2009 Sep 3;361(10):947-57 - PubMed
  10. Clin Biochem. 2006 Dec;39(12):1144-51 - PubMed
  11. N Engl J Med. 2005 Jul 14;353(2):123-32 - PubMed
  12. Bioinformatics. 2007 Mar 1;23(5):619-26 - PubMed
  13. Eur J Cancer. 2011 Sep;47(13):1962-70 - PubMed
  14. J Clin Oncol. 2008 Sep 10;26(26):4268-75 - PubMed
  15. Clin Cancer Res. 2012 Apr 15;18(8):2391-401 - PubMed
  16. Lung Cancer. 2010 Sep;69(3):272-8 - PubMed
  17. J Thorac Oncol. 2010 Feb;5(2):169-78 - PubMed
  18. Cancer Res. 2005 Oct 15;65(20):9176-84 - PubMed
  19. J Clin Oncol. 2012 Sep 1;30(25):3077-83 - PubMed
  20. Br J Cancer. 2012 Nov 20;107(11):1820-5 - PubMed
  21. J Thorac Oncol. 2010 Jan;5(1):99-104 - PubMed
  22. J Clin Oncol. 2009 Jun 1;27(16):2653-9 - PubMed
  23. Clin Cancer Res. 2009 Mar 15;15(6):2076-84 - PubMed
  24. J Thorac Oncol. 2012 Jan;7(1):40-8 - PubMed
  25. J Proteomics. 2012 Dec 5;76 Spec No.:91-101 - PubMed
  26. PLoS One. 2012;7(6):e40109 - PubMed
  27. J Clin Oncol. 2008 Dec 1;26(34):5589-95 - PubMed
  28. Clin Cancer Res. 2007 Feb 1;13(3):799-805 - PubMed
  29. Nat Rev Clin Oncol. 2009 May;6(5):287-94 - PubMed
  30. Cancer Sci. 2008 May;99(5):929-35 - PubMed
  31. Nat Biotechnol. 2005 Mar;23(3):291-2 - PubMed
  32. Clin Cancer Res. 2011 Dec 15;17(24):7808-15 - PubMed
  33. Onco Targets Ther. 2012;5:439-47 - PubMed
  34. J Thorac Oncol. 2006 Sep;1(7):684-91 - PubMed
  35. Laryngoscope. 2008 Jan;118(1):61-8 - PubMed
  36. J Natl Cancer Inst. 2007 Jun 6;99(11):838-46 - PubMed
  37. Eur Urol. 2009 Dec;56(6):989-96 - PubMed
  38. Science. 2004 Jun 4;304(5676):1497-500 - PubMed
  39. J Thorac Oncol. 2009 Jun;4(6):689-96 - PubMed
  40. Cancer Epidemiol Biomarkers Prev. 2010 Feb;19(2):358-65 - PubMed
  41. J Thorac Oncol. 2012 Nov;7(11):1653-60 - PubMed
  42. PLoS One. 2013 May 28;8(5):e64816 - PubMed
  43. Proteome Sci. 2009 Sep 03;7:34 - PubMed
  44. J Thorac Oncol. 2006 Mar;1(3):260-7 - PubMed
  45. Lancet Oncol. 2010 Feb;11(2):104-5 - PubMed
  46. Anal Chem. 2004 Mar 15;76(6):1560-70 - PubMed
  47. N Engl J Med. 2008 Jul 24;359(4):366-77 - PubMed
  48. N Engl J Med. 2004 May 20;350(21):2129-39 - PubMed
  49. Lung Cancer. 2010 Sep;69(3):337-40 - PubMed
  50. Int J Oncol. 2009 Oct;35(4):683-92 - PubMed
  51. Cancer Chemother Pharmacol. 2012 May;69(5):1241-6 - PubMed
  52. J Clin Oncol. 2011 Jul 20;29(21):2866-74 - PubMed
  53. Front Biosci (Landmark Ed). 2009 Jan 01;14:3712-23 - PubMed
  54. J Clin Oncol. 2011 Aug 20;29(24):3316-21 - PubMed

Publication Types