Display options
Share it on

Biomed Opt Express. 2013 Oct 01;4(11):2284-95. doi: 10.1364/BOE.4.002284. eCollection 2013.

Feasibility study of brain tumor delineation using immunolabeled gold nanorods.

Biomedical optics express

Kevin Seekell, Spencer Lewis, Christy Wilson, Shuqin Li, Gerald Grant, Adam Wax

Affiliations

  1. Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.

PMID: 24298394 PMCID: PMC3829528 DOI: 10.1364/BOE.4.002284

Abstract

Effective treatment of patients with malignant brain tumors requires surgical resection of a high percentage of the bulk tumor. Surgeons require a method that enables delineation of tumor margins, which are not visually distinct by eye. In this study, the feasibility of using gold nanorods (GNRs) for this purpose is evaluated. Anti-Epidermal Growth Factor Receptor (anti-EGFR) conjugated GNRs are used to label human xenograft glioblastoma multiforme (GBM) tumors embedded within slices of brain tissues from healthy nude mice. The anti-EGFR GNRs exhibit enhanced absorption at red to near-infrared wavelengths, often referred to as the tissue optical window, where absorption from blood is minimal. To enable definition of molecular specificity and spatial accuracy of the label, the GNR absorption is compared with GFP fluorescence which is expressed by the GBM cells used here. This work demonstrates a simple but highly translational technique to classify normal and malignant brain tissue regions in open surgery applications using immunolabeled GNR contrast agents.

Keywords: (170.6930) Tissue; (250.5403) Plasmonics

References

  1. J Clin Neurosci. 2009 Jun;16(6):748-54 - PubMed
  2. Eur J Cancer. 2001 Sep;37 Suppl 4:S9-15 - PubMed
  3. Lasers Surg Med. 2012 Apr;44(4):310-7 - PubMed
  4. Cancers (Basel). 2011 Feb 10;3(1):621-35 - PubMed
  5. J Am Chem Soc. 2013 May 29;135(21):7799-802 - PubMed
  6. J Biomed Opt. 2011 Nov;16(11):116003 - PubMed
  7. Chem Soc Rev. 2008 Sep;37(9):1896-908 - PubMed
  8. Surg Neurol. 1999 Oct;52(4):371-9 - PubMed
  9. Acc Chem Res. 2008 Dec;41(12):1721-30 - PubMed
  10. Neuroimage. 2005 Jan 1;24(1):12-20 - PubMed
  11. Acta Neuropathol. 2007 Aug;114(2):97-109 - PubMed
  12. Biomaterials. 2008 Apr;29(12):1912-9 - PubMed
  13. Int J Radiat Oncol Biol Phys. 2004 Mar 1;58(3):903-13 - PubMed
  14. ACS Nano. 2012 Oct 23;6(10):9182-90 - PubMed
  15. Methods. 2012 Feb;56(2):310-6 - PubMed
  16. Nano Lett. 2007 Dec;7(12):3759-65 - PubMed
  17. J Phys Chem B. 2006 Apr 13;110(14):7238-48 - PubMed
  18. AJR Am J Roentgenol. 2009 Apr;192(4):1021-8 - PubMed
  19. Opt Express. 2005 Apr 4;13(7):2668-77 - PubMed
  20. Opt Lett. 2011 Mar 1;36(5):757-9 - PubMed
  21. Fam Med. 2005 May;37(5):360-3 - PubMed
  22. Nat Protoc. 2008;3(2):314-20 - PubMed
  23. Nano Lett. 2007 Jun;7(6):1591-7 - PubMed
  24. Small. 2005 Mar;1(3):325-7 - PubMed
  25. Neurol Clin. 2003 Nov;21(4):897-913 - PubMed
  26. Ultrasound Med Biol. 2009 Aug;35(8):1298-308 - PubMed
  27. J Clin Neurosci. 2013 May;20(5):670-5 - PubMed
  28. J Neurooncol. 2010 May;98(1):93-9 - PubMed
  29. Cancer Res. 2003 May 1;63(9):1999-2004 - PubMed
  30. ACS Nano. 2011 Nov 22;5(11):8532-40 - PubMed

Publication Types

Grant support