Display options
Share it on

Physiol Rep. 2013 Oct;1(5):e00085. doi: 10.1002/phy2.85. Epub 2013 Oct 11.

Pericellular Ca(2+) recycling potentiates thrombin-evoked Ca(2+) signals in human platelets.

Physiological reports

Stewart O Sage, Nicholas Pugh, Richard W Farndale, Alan G S Harper

Affiliations

  1. Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, U.K.

PMID: 24303163 PMCID: PMC3841026 DOI: 10.1002/phy2.85

Abstract

We have previously demonstrated that Na(+)/Ca(2+) exchangers (NCXs) potentiate Ca(2+) signaling evoked by thapsigargin in human platelets, via their ability to modulate the secretion of autocoids from dense granules. This link was confirmed in platelets stimulated with the physiological agonist, thrombin, and experiments were performed to examine how Ca(2+) removal by the NCX modulates platelet dense granule secretion. In cells loaded with the near-membrane indicator FFP-18, thrombin stimulation was observed to elicit an NCX-dependent accumulation of Ca(2+) in a pericellular region around the platelets. To test whether this pericellular Ca(2+) accumulation might be responsible for the influence of NCXs over platelet function, platelets were exposed to fast Ca(2+) chelators or had their glycocalyx removed. Both manipulations of the pericellular Ca(2+) rise reduced thrombin-evoked Ca(2+) signals and dense granule secretion. Blocking Ca(2+)-permeable ion channels had a similar effect, suggesting that Ca(2+) exported into the pericellular region is able to recycle back into the platelet cytosol. Single cell imaging with extracellular Fluo-4 indicated that thrombin-evoked rises in extracellular [Ca(2+)] occurred within the boundary described by the cell surface, suggesting their presence within the open canalicular system (OCS). FFP-18 fluorescence was similarly distributed. These data suggest that upon thrombin stimulation, NCX activity creates a rise in [Ca(2+)] within the pericellular region of the platelet from where it recycles back into the platelet cytosol, acting to both accelerate dense granule secretion and maintain the initial rise in cytosolic [Ca(2+)].

Keywords: Ca2+; FFP-18; nanojunction; open canalicular system; pericellular; platelets

References

  1. Neuroreport. 1998 Oct 26;9(15):3403-7 - PubMed
  2. Biochim Biophys Acta. 1993 Apr 16;1176(3):215-21 - PubMed
  3. Biochim Biophys Acta. 1989 Jun 6;981(2):367-70 - PubMed
  4. Biochim Biophys Acta. 1988 Mar 3;938(3):497-500 - PubMed
  5. Biochem J. 1991 Dec 15;280 ( Pt 3):783-9 - PubMed
  6. Cell Calcium. 2007 Oct-Nov;42(4-5):379-87 - PubMed
  7. Cell Calcium. 1992 Mar;13(3):183-92 - PubMed
  8. Cell Calcium. 2007 Dec;42(6):606-17 - PubMed
  9. Thromb Haemost. 1982 Feb 26;47(1):22-6 - PubMed
  10. Biochem Pharmacol. 2007 Dec 3;74(11):1596-607 - PubMed
  11. Eur J Biochem. 2002 Mar;269(5):1543-52 - PubMed
  12. J Gen Physiol. 1986 Aug;88(2):149-65 - PubMed
  13. Exp Physiol. 2009 May;94(5):509-19 - PubMed
  14. Cell Calcium. 2003 May-Jun;33(5-6):311-21 - PubMed
  15. J Biol Chem. 2004 Oct 22;279(43):44250-7 - PubMed
  16. Thromb Haemost. 1999 Feb;81(2):286-92 - PubMed
  17. J Biol Chem. 1987 Dec 5;262(34):16364-9 - PubMed
  18. Cell Calcium. 1998 May;23(5):269-79 - PubMed
  19. Nature. 1987 Jan 29-Feb 4;325(6103):456-8 - PubMed
  20. Thromb Haemost. 1985 Oct 30;54(3):645-9 - PubMed
  21. Biochem Biophys Res Commun. 1988 Jun 16;153(2):848-54 - PubMed
  22. Biophys J. 2010 Aug 4;99(3):755-64 - PubMed
  23. Biochim Biophys Acta. 1987 Jun 15;929(1):88-102 - PubMed
  24. Cell Calcium. 2009 May;45(5):413-20 - PubMed
  25. Blood. 2009 Jul 2;114(1):e10-9 - PubMed
  26. Arterioscler Thromb Vasc Biol. 1996 Feb;16(2):230-5 - PubMed
  27. Cold Spring Harb Perspect Biol. 2010 Nov;2(11):a004051 - PubMed
  28. J Thromb Haemost. 2010 Jul;8(7):1604-13 - PubMed
  29. Cell Calcium. 2007 Oct-Nov;42(4-5):373-8 - PubMed
  30. J Thromb Haemost. 2011 Mar;9(3):540-51 - PubMed
  31. Blood. 2010 Aug 19;116(7):1147-56 - PubMed
  32. Physiol Rev. 2006 Jan;86(1):155-203 - PubMed
  33. Blood. 2008 Nov 15;112(10):4069-79 - PubMed
  34. Blood. 2001 May 1;97(9):2648-56 - PubMed
  35. Am J Pathol. 1972 Feb;66(2):295-312 - PubMed
  36. Br J Pharmacol. 2012 Feb;165(4):922-36 - PubMed
  37. Am J Physiol. 1998 Aug;275(2):C423-30 - PubMed
  38. Cell Calcium. 1998 Oct;24(4):275-83 - PubMed
  39. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5368-73 - PubMed
  40. Stroke. 2008 Jun;39(6):1774-8 - PubMed
  41. Cell Calcium. 1989 Oct;10(7):491-8 - PubMed
  42. J Physiol. 1999 Jul 15;518 ( Pt 2):463-7 - PubMed
  43. J Histochem Cytochem. 1975 Feb;23(2):103-6 - PubMed
  44. Physiol Rev. 1982 Jan;62(1):185-261 - PubMed
  45. Annu Rev Med. 1979;30:119-34 - PubMed
  46. J Biol Chem. 1985 Mar 25;260(6):3440-50 - PubMed
  47. Biochim Biophys Acta. 1986 May 29;886(3):406-10 - PubMed
  48. J Biol Chem. 2004 May 7;279(19):19421-30 - PubMed
  49. Biochem J. 1990 Oct 15;271(2):515-22 - PubMed
  50. J Physiol. 1995 Apr 1;484 ( Pt 1):15-24 - PubMed
  51. J Physiol. 1997 Jun 15;501 ( Pt 3):485-95 - PubMed
  52. FEBS Lett. 1985 Jul 8;186(2):175-9 - PubMed
  53. Biophys Chem. 2004 Dec 20;112(2-3):131-40 - PubMed
  54. J Thromb Haemost. 2007 May;5(5):910-7 - PubMed
  55. J Biol Chem. 1985 Jul 25;260(15):8657-60 - PubMed
  56. J Biol Chem. 1982 Dec 10;257(23):14000-5 - PubMed
  57. J Physiol. 2001 Sep 15;535(Pt 3):625-35 - PubMed
  58. Neuron. 1996 Jan;16(1):89-101 - PubMed
  59. Cell Calcium. 1989 Feb-Mar;10(2):101-13 - PubMed
  60. Thromb Haemost. 1987 Jun 3;57(3):337-40 - PubMed
  61. Blood. 2012 Oct 11;120(15):e73-82 - PubMed
  62. J Histochem Cytochem. 1980 Nov;28(11):1183-8 - PubMed
  63. J Cell Biol. 2003 Mar 31;160(7):1151-61 - PubMed
  64. Physiol Rev. 1999 Jul;79(3):763-854 - PubMed
  65. J Physiol. 1990 Sep;428:723-35 - PubMed
  66. FEBS Lett. 1987 Dec 10;225(1-2):72-6 - PubMed
  67. J Thromb Haemost. 2010 Dec;8(12):2766-74 - PubMed
  68. J Biol Chem. 1984 Oct 25;259(20):12571-5 - PubMed
  69. J Thromb Haemost. 2009 Feb;7(2):330-8 - PubMed

Publication Types

Grant support