Display options
Share it on

Front Plant Sci. 2013 Dec 02;4:489. doi: 10.3389/fpls.2013.00489. eCollection 2013.

Comparative profiling of miRNA expression in developing seeds of high linoleic and high oleic safflower (Carthamus tinctorius L.) plants.

Frontiers in plant science

Shijiang Cao, Qian-Hao Zhu, Wanxia Shen, Xiaoming Jiao, Xiaochun Zhao, Ming-Bo Wang, Lixia Liu, Surinder P Singh, Qing Liu

Affiliations

  1. Commonwealth Scientific and Industrial Research Organization Plant Industry ACT, Australia.
  2. Commonwealth Scientific and Industrial Research Organization Plant Industry ACT, Australia ; National Citrus Engineering Research Center, Citrus Research Institute, Southwest University Chongqing, China.
  3. Commonwealth Scientific and Industrial Research Organization Plant Industry ACT, Australia ; National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences Beijing, China.
  4. School of Life Sciences, Northeast Normal University Changchun, China.

PMID: 24348492 PMCID: PMC3844856 DOI: 10.3389/fpls.2013.00489

Abstract

Vegetable oils high in oleic acid are considered to be advantageous because of their better nutritional value and potential industrial applications. The oleic acid content in the classic safflower oil is normally 10-15% while a natural mutant (ol) accumulates elevated oleic acid up to 70% in seed oil. As a part of our investigation into the molecular features of the high oleic (HO) trait in safflower we have profiled the microRNA (miRNA) populations in developing safflower seeds expressing the ol allele in comparison to the wild type high linoleic (HL) safflower using deep sequencing technology. The small RNA populations of the mid-maturity developing embryos of homozygous ol HO and wild type HL safflower had a very similar size distribution pattern, however, only ~16.5% of the unique small RNAs were overlapping in these two genotypes. From these two small RNA populations we have found 55 known miRNAs and identified two candidate novel miRNA families to be likely unique to the developing safflower seeds. Target genes with conserved as well as novel functions were predicted for the conserved miRNAs. We have also identified 13 miRNAs differentially expressed between the HO and HL safflower genotypes. The results may lay a foundation for unraveling the miRNA-mediated molecular processes that regulate oleic acid accumulation in the HO safflower mutant and developmental processes in safflower embryos in general.

Keywords: Carthamus tinctorius; comparative analysis; high oleic; miRNA profiling; safflower

References

  1. PLoS One. 2007 Feb 14;2(2):e219 - PubMed
  2. Science. 1994 Oct 28;266(5185):605-14 - PubMed
  3. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W701-4 - PubMed
  4. Plant J. 2010 Jun 1;62(6):960-76 - PubMed
  5. BMC Genomics. 2012 Jul 16;13:310 - PubMed
  6. Genes Dev. 2006 Apr 1;20(7):759-71 - PubMed
  7. RNA. 2008 May;14(5):903-13 - PubMed
  8. Theor Appl Genet. 2013 Sep;126(9):2219-31 - PubMed
  9. Genome Res. 2008 Oct;18(10):1602-9 - PubMed
  10. J Biol Chem. 2008 Jun 6;283(23):15932-45 - PubMed
  11. Plant Methods. 2007 Oct 12;3:12 - PubMed
  12. Plant Cell. 2006 Aug;18(8):2051-65 - PubMed
  13. BMC Genomics. 2010 Apr 17;11:246 - PubMed
  14. Genes Dev. 2010 Dec 1;24(23):2678-92 - PubMed
  15. J Exp Bot. 2011 Mar;62(5):1611-20 - PubMed
  16. Plant Cell. 2005 Aug;17(8):2186-203 - PubMed
  17. BMC Genomics. 2012 Aug 01;13:360 - PubMed
  18. Plant Cell. 2008 Dec;20(12):3186-90 - PubMed
  19. BMC Plant Biol. 2008 Feb 29;8:25 - PubMed
  20. PLoS One. 2011;6(11):e27530 - PubMed
  21. Planta. 2011 Mar;233(3):611-9 - PubMed
  22. Curr Biol. 2002 Apr 30;12(9):735-9 - PubMed
  23. Annu Rev Plant Biol. 2006;57:19-53 - PubMed
  24. Curr Biol. 2005 Nov 22;15(22):2038-43 - PubMed
  25. Biochem Biophys Res Commun. 2009 Jan 23;378(4):799-803 - PubMed
  26. RNA. 2010 Sep;16(9):1692-724 - PubMed
  27. RNA. 2008 Aug;14(8):1508-15 - PubMed
  28. Curr Biol. 2009 Sep 15;19(17):1485-90 - PubMed
  29. Genome Res. 2008 Sep;18(9):1456-65 - PubMed
  30. Mol Cell. 2004 Jun 18;14(6):787-99 - PubMed
  31. Genome Res. 2008 Apr;18(4):571-84 - PubMed
  32. Plant Cell. 2004 Aug;16(8):2001-19 - PubMed
  33. PLoS Biol. 2007 Mar;5(3):e57 - PubMed
  34. PLoS Genet. 2012;8(11):e1003091 - PubMed
  35. BMC Evol Biol. 2011 May 12;11:122 - PubMed
  36. N Engl J Med. 1999 Jun 24;340(25):1994-8 - PubMed
  37. BMC Genomics. 2010 Jul 13;11:431 - PubMed
  38. EMBO J. 2002 Nov 1;21(21):5864-74 - PubMed
  39. RNA. 2009 May;15(5):992-1002 - PubMed
  40. RNA. 2004 Nov;10(11):1813-9 - PubMed
  41. Nat Genet. 2006 Jun;38 Suppl:S31-6 - PubMed
  42. Nucleic Acids Res. 2005 Nov 27;33(20):e179 - PubMed
  43. Cell. 2005 Apr 22;121(2):207-21 - PubMed
  44. Plant Cell. 2005 May;17(5):1397-411 - PubMed
  45. Nucleic Acids Res. 2004 Mar 12;32(5):1688-95 - PubMed
  46. Nucleic Acids Res. 2012 Aug;40(15):7291-302 - PubMed
  47. Mol Cell. 2010 May 14;38(3):465-75 - PubMed
  48. Genes Dev. 2011 Dec 1;25(23):2540-53 - PubMed
  49. Cell Res. 2005 May;15(5):336-60 - PubMed
  50. Genes Dev. 2006 Dec 15;20(24):3407-25 - PubMed
  51. Plant J. 2010 Jun 1;62(6):1046-57 - PubMed
  52. Genome Biol. 2007;8(6):R96 - PubMed
  53. J Exp Bot. 2010 Oct;61(15):4157-68 - PubMed
  54. RNA. 2003 Mar;9(3):277-9 - PubMed
  55. Cell. 2004 Jan 23;116(2):281-97 - PubMed

Publication Types