Display options
Share it on

Front Hum Neurosci. 2013 Dec 03;7:817. doi: 10.3389/fnhum.2013.00817. eCollection 2013.

Functional diffusion tensor imaging at 3 Tesla.

Frontiers in human neuroscience

René C W Mandl, Hugo G Schnack, Marcel P Zwiers, René S Kahn, Hilleke E Hulshoff Pol

Affiliations

  1. 1Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands.
  2. 2Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour Centre for Cognitive Neuroimaging Nijmegen, Netherlands.

PMID: 24409133 PMCID: PMC3847896 DOI: 10.3389/fnhum.2013.00817

Abstract

In a previous study we reported on a non-invasive functional diffusion tensor imaging (fDTI) method to measure neuronal signals directly from subtle changes in fractional anisotropy along white matter tracts. We hypothesized that these fractional anisotropy changes relate to morphological changes of glial cells induced by axonal activity. In the present study we set out to replicate the results of the previous study with an improved fDTI scan acquisition scheme. A group of twelve healthy human participants were scanned on a 3 Tesla MRI scanner. Activation was revealed in the contralateral thalamo-cortical tract and optic radiations during tactile and visual stimulation, respectively. Mean percent signal change in FA was 3.47% for the tactile task and 3.79% for the visual task, while for the MD the mean percent signal change was only -0.10 and -0.09%. The results support the notion of different response functions for tactile and visual stimuli. With this study we successfully replicated our previous findings using the same types of stimuli but on a different group of healthy participants and at different field-strength. The successful replication of our first fDTI results suggests that the non-invasive fDTI method is robust enough to study the functional neural networks in the human brain within a practically feasible time period.

Keywords: DTI; MRI imaging; activation; task performance and analysis; white matter

References

  1. J Neurosci. 2007 May 16;27(20):5326-37 - PubMed
  2. Magn Reson Med. 1999 Feb;41(2):241-6 - PubMed
  3. Neuroimage. 2003 Feb;18(2):214-30 - PubMed
  4. Magn Reson Imaging. 2002 Oct;20(8):575-82 - PubMed
  5. Neuroscience. 2004;129(4):861-76 - PubMed
  6. J Magn Reson B. 1996 Jun;111(3):209-19 - PubMed
  7. Magn Reson Imaging. 2008 Sep;26(7):889-96 - PubMed
  8. Magn Reson Med. 1999 Feb;41(2):236-40 - PubMed
  9. Magn Reson Med. 2013 Feb;69(2):303-9 - PubMed
  10. Somatosens Mot Res. 2013 Sep;30(3):109-13 - PubMed
  11. Magn Reson Med. 2008 Apr;59(4):700-6 - PubMed
  12. Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20967-72 - PubMed
  13. Nat Neurosci. 2009 Nov;12(11):1370-1 - PubMed
  14. Magn Reson Med. 1999 Jul;42(1):37-41 - PubMed
  15. Ann Neurol. 1999 Feb;45(2):265-9 - PubMed
  16. Radiology. 1986 Nov;161(2):401-7 - PubMed
  17. Neuroimage. 2008 Jul 1;41(3):801-12 - PubMed
  18. Magn Reson Imaging. 2008 Feb;26(2):198-205 - PubMed
  19. Magn Reson Med. 2005 May;53(5):1088-95 - PubMed
  20. Neuroimage. 2011 Jul 1;57(1):140-148 - PubMed
  21. Magn Reson Med. 2006 Dec;56(6):1283-92 - PubMed
  22. NMR Biomed. 2009 Aug;22(7):770-8 - PubMed
  23. J Neurosci. 1985 Feb;5(2):532-5 - PubMed
  24. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10422-7 - PubMed
  25. Magn Reson Med. 1995 Oct;34(4):555-66 - PubMed
  26. Magn Reson Imaging. 2012 Sep;30(7):993-1001 - PubMed
  27. Ann Neurol. 2005 Jan;57(1):5-7 - PubMed
  28. Neuroimage. 2003 Oct;20(2):870-88 - PubMed
  29. Magn Reson Med. 1996 Feb;35(2):155-8 - PubMed
  30. Neuroimage. 2009 Oct 1;47(4):1487-95 - PubMed
  31. Cereb Cortex. 2010 Nov;20(11):2636-46 - PubMed
  32. J Mol Neurosci. 2012 Jul;47(3):639-48 - PubMed
  33. J Magn Reson Imaging. 2007 May;25(5):947-56 - PubMed
  34. Glia. 2005 Aug 1;51(2):121-31 - PubMed
  35. NMR Biomed. 2002 Nov-Dec;15(7-8):468-80 - PubMed
  36. J Magn Reson B. 1994 Mar;103(3):247-54 - PubMed
  37. NMR Biomed. 1995 Nov-Dec;8(7-8):359-64 - PubMed
  38. Brain. 2005 Oct;128(Pt 10):2224-39 - PubMed
  39. Neuroimage. 2002 May;16(1):177-99 - PubMed
  40. Magn Reson Med. 1996 Feb;35(2):162-7 - PubMed
  41. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9391-5 - PubMed
  42. Proc Natl Acad Sci U S A. 2006 May 23;103(21):8263-8 - PubMed
  43. Glia. 2002 Feb;37(2):114-23 - PubMed
  44. Radiology. 1988 Aug;168(2):497-505 - PubMed
  45. Neuroimage. 2013 Aug 1;76:98-107 - PubMed
  46. Neuroimage. 2009 Jun;46(2):411-8 - PubMed
  47. Neuroimage. 2009 May 1;45(4):1126-34 - PubMed
  48. PLoS One. 2008;3(11):e3631 - PubMed
  49. Neuroimage. 2012 May 15;61(1):106-14 - PubMed
  50. Neuroimage. 2008 Jan 1;39(1):336-47 - PubMed
  51. J Neurosci. 2008 Oct 22;28(43):10844-51 - PubMed

Publication Types