Display options
Share it on

Front Syst Neurosci. 2013 Dec 31;7:125. doi: 10.3389/fnsys.2013.00125. eCollection 2013.

Corpus callosal microstructure influences intermanual transfer in chimpanzees.

Frontiers in systems neuroscience

Kimberley A Phillips, Jennifer A Schaeffer, William D Hopkins

Affiliations

  1. Department of Psychology, Trinity University San Antonio, TX, USA ; Southwest National Primate Research Center, Texas Biomedical Research Institute San Antonio, TX, USA.
  2. Division of Cognitive and Developmental Neuroscience, Yerkes National Primate Research Center Atlanta, GA, USA.
  3. Division of Cognitive and Developmental Neuroscience, Yerkes National Primate Research Center Atlanta, GA, USA ; Neuroscience Institute and Language Research Center, Georgia State University Atlanta, GA, USA.

PMID: 24427118 PMCID: PMC3875866 DOI: 10.3389/fnsys.2013.00125

Abstract

Learning a new motor skill with one hand typically results in performance improvements in the alternate hand. The neural substrates involved with this skill acquisition are poorly understood. We combined behavioral testing and non-invasive brain imaging to study how the organization of the corpus callosum was related to intermanual transfer performance in chimpanzees. Fifty-three chimpanzees were tested for intermanual transfer of learning using a bent-wire task. Magnetic resonance and diffusion tensor images were collected from 39 of these subjects. The dominant hand showed greater performance benefits than the nondominant hand. Further, performance was associated with structural integrity of the motor and sensory regions of the CC. Subjects with better intermanual transfer of learning had lower fractional anisotropy values. The results are consistent with the callosal access model of motor programming.

Keywords: chimpanzees; fractional anisotropy; intermanual transfer; manual performance

References

  1. Exp Brain Res. 2002 Oct;146(3):369-78 - PubMed
  2. Neuroreport. 1992 May;3(5):397-400 - PubMed
  3. Learn Mem. 2012 Jul 26;19(8):351-7 - PubMed
  4. Brain Res. 2008 Aug 28;1227:52-67 - PubMed
  5. Brain Cogn. 1989 Sep;11(1):98-113 - PubMed
  6. Dev Psychobiol. 2010 Mar;52(2):133-41 - PubMed
  7. J Neural Transm (Vienna). 2013 Sep;120(9):1369-95 - PubMed
  8. J Neurosci. 2007 Sep 19;27(38):10106-15 - PubMed
  9. J Mot Behav. 1970 Dec;2(4):261-71 - PubMed
  10. Rev Neurosci. 2008;19(6):451-66 - PubMed
  11. Neuroimage. 2006 Sep;32(3):989-94 - PubMed
  12. Hum Brain Mapp. 2011 Feb;32(2):218-28 - PubMed
  13. Front Syst Neurosci. 2010 Jun 07;4:17 - PubMed
  14. Brain Res. 2007 Apr 20;1142:189-205 - PubMed
  15. J Magn Reson B. 1996 Jun;111(3):209-19 - PubMed
  16. Invest Radiol. 2009 May;44(5):279-84 - PubMed
  17. Laterality. 2012;17(1):18-37 - PubMed
  18. Ann Neurol. 1993 Jul;34(1):71-5 - PubMed
  19. Cortex. 1980 Dec;16(4):587-603 - PubMed
  20. Neuroimage. 2007 Jan 1;34(1):61-73 - PubMed
  21. Curr Biol. 2007 Nov 6;17(21):1896-902 - PubMed
  22. Nat Rev Neurosci. 2006 Feb;7(2):160-6 - PubMed
  23. PLoS One. 2012;7(2):e31941 - PubMed
  24. Laterality. 2005 Jul;10(4):337-44 - PubMed
  25. Behav Brain Res. 2012 Oct 1;234(2):248-54 - PubMed
  26. Hum Brain Mapp. 2013 Feb;34(2):384-95 - PubMed
  27. J Neurosci. 2008 Mar 19;28(12):3227-33 - PubMed
  28. PLoS One. 2010 Oct 13;5(10):e13383 - PubMed
  29. J Neurosci. 2007 Nov 7;27(45):12132-8 - PubMed
  30. Comput Methods Programs Biomed. 2006 Feb;81(2):106-16 - PubMed
  31. Brain Lang. 2006 Apr;97(1):80-90 - PubMed
  32. J Neurosci. 1991 Apr;11(4):933-42 - PubMed
  33. J Exp Psychol Gen. 2002 Sep;131(3):412-23 - PubMed
  34. Neuroimage. 2012 Mar;60(1):340-52 - PubMed
  35. Exp Brain Res. 2003 Jan;148(1):38-49 - PubMed

Publication Types

Grant support