Display options
Share it on

Microbiome. 2013 Dec 17;1(1):30. doi: 10.1186/2049-2618-1-30.

Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life.

Microbiome

Christopher T Brown, Itai Sharon, Brian C Thomas, Cindy J Castelle, Michael J Morowitz, Jillian F Banfield

Affiliations

  1. Department of Earth & Planetary Science, University of California, Berkeley, USA. [email protected].

PMID: 24451181 PMCID: PMC4177395 DOI: 10.1186/2049-2618-1-30

Abstract

BACKGROUND: The premature infant gut has low individual but high inter-individual microbial diversity compared with adults. Based on prior 16S rRNA gene surveys, many species from this environment are expected to be similar to those previously detected in the human microbiota. However, the level of genomic novelty and metabolic variation of strains found in the infant gut remains relatively unexplored.

RESULTS: To study the stability and function of early microbial colonizers of the premature infant gut, nine stool samples were taken during the third week of life of a premature male infant delivered via Caesarean section. Metagenomic sequences were assembled and binned into near-complete and partial genomes, enabling strain-level genomic analysis of the microbial community.We reconstructed eleven near-complete and six partial bacterial genomes representative of the key members of the microbial community. Twelve of these genomes share >90% putative ortholog amino acid identity with reference genomes. Manual curation of the assembly of one particularly novel genome resulted in the first essentially complete genome sequence (in three pieces, the order of which could not be determined due to a repeat) for Varibaculum cambriense (strain Dora), a medically relevant species that has been implicated in abscess formation.During the period studied, the microbial community undergoes a compositional shift, in which obligate anaerobes (fermenters) overtake Escherichia coli as the most abundant species. Other species remain stable, probably due to their ability to either respire anaerobically or grow by fermentation, and their capacity to tolerate fluctuating levels of oxygen. Metabolic predictions for V. cambriense suggest that, like other members of the microbial community, this organism is able to process various sugar substrates and make use of multiple different electron acceptors during anaerobic respiration. Genome comparisons within the family Actinomycetaceae reveal important differences related to respiratory metabolism and motility.

CONCLUSIONS: Genome-based analysis provided direct insight into strain-specific potential for anaerobic respiration and yielded the first genome for the genus Varibaculum. Importantly, comparison of these de novo assembled genomes with closely related isolate genomes supported the accuracy of the metagenomic methodology. Over a one-week period, the early gut microbial community transitioned to a community with a higher representation of obligate anaerobes, emphasizing both taxonomic and metabolic instability during colonization.

References

  1. FEMS Microbiol Lett. 2007 Nov;276(2):129-39 - PubMed
  2. PLoS Biol. 2007 Jul;5(7):e177 - PubMed
  3. Science. 2008 Oct 10;322(5899):275-8 - PubMed
  4. Bioinformatics. 2010 Oct 1;26(19):2460-1 - PubMed
  5. Nature. 2012 Oct 4;490(7418):55-60 - PubMed
  6. ISME J. 2011 Jul;5(7):1178-90 - PubMed
  7. Nat Protoc. 2006;1(2):870-3 - PubMed
  8. BMC Bioinformatics. 2010 Mar 08;11:119 - PubMed
  9. Mol Microbiol. 1993 Apr;8(2):205-10 - PubMed
  10. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6578-83 - PubMed
  11. Am J Clin Nutr. 1990 Apr;51(4):589-93 - PubMed
  12. N Engl J Med. 1992 May 7;326(19):1233-9 - PubMed
  13. Nat Commun. 2013;4:2120 - PubMed
  14. ISRN Microbiol. 2013 Jan 15;2013:816713 - PubMed
  15. Yeast. 2000 Apr;17(1):48-55 - PubMed
  16. Bioinformatics. 2007 May 15;23(10):1282-8 - PubMed
  17. Nature. 2006 Dec 21;444(7122):1027-31 - PubMed
  18. BMC Bioinformatics. 2003 Sep 11;4:41 - PubMed
  19. Genome Biol. 2009;10(3):R25 - PubMed
  20. Science. 2012 Sep 28;337(6102):1661-5 - PubMed
  21. J Bacteriol. 2005 Sep;187(18):6258-64 - PubMed
  22. J Pediatr. 2010 Jan;156(1):20-5 - PubMed
  23. Microbiology (Reading). 2007 Sep;153(Pt 9):2817-2822 - PubMed
  24. Nature. 2011 Sep 21;478(7368):250-4 - PubMed
  25. J Bacteriol. 2005 Mar;187(6):2020-9 - PubMed
  26. Microbiome. 2013 Aug 05;1(1):22 - PubMed
  27. Science. 2011 Jan 28;331(6016):463-7 - PubMed
  28. Nature. 2004 Mar 4;428(6978):37-43 - PubMed
  29. Nucleic Acids Res. 1997 Jan 1;25(1):109-11 - PubMed
  30. EMBO Rep. 2013 Apr;14(4):319-27 - PubMed
  31. J Glycomics Lipidomics. 2012 May 1;Suppl 1:002 - PubMed
  32. J Perinatol. 2009 May;29 Suppl 2:S2-6 - PubMed
  33. Nature. 2010 Mar 4;464(7285):59-65 - PubMed
  34. Mol Oral Microbiol. 2011 Jun;26(3):221-7 - PubMed
  35. Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14 - PubMed
  36. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 - PubMed
  37. Emerg Infect Dis. 2009 Jul;15(7):1137-9 - PubMed
  38. Nucleic Acids Res. 2012 Jan;40(Database issue):D130-5 - PubMed
  39. J Med Microbiol. 2011 Nov;60(Pt 11):1617-1625 - PubMed
  40. Nature. 2007 Jul 26;448(7152):427-34 - PubMed
  41. J Mol Biol. 1970 Mar;48(3):443-53 - PubMed
  42. PLoS One. 2011;6(10):e25792 - PubMed
  43. Science. 2001 Feb 2;291(5505):881-4 - PubMed
  44. Appl Environ Microbiol. 1978 Aug;36(2):306-13 - PubMed
  45. Mol Biol Evol. 2011 Oct;28(10):2731-9 - PubMed
  46. Cell Microbiol. 2012 Aug;14(8):1174-82 - PubMed
  47. Genome Res. 2008 May;18(5):821-9 - PubMed
  48. Bioinformatics. 2002;18 Suppl 1:S225-32 - PubMed
  49. Science. 2013 Feb 8;339(6120):708-11 - PubMed
  50. Nature. 2009 Oct 29;461(7268):1282-6 - PubMed
  51. Biochim Biophys Acta. 1994 Jun 1;1192(1):7-13 - PubMed
  52. Microbiome. 2013 Apr 16;1(1):13 - PubMed
  53. Ugeskr Laeger. 2008 Jan 28;170(5):328-30 - PubMed
  54. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11070-5 - PubMed
  55. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4578-85 - PubMed
  56. Mol Microbiol. 2008 Jun;68(5):1128-48 - PubMed
  57. J Clin Microbiol. 2003 Feb;41(2):640-4 - PubMed
  58. Bioinformatics. 2001 Sep;17(9):847-8 - PubMed
  59. Arch Microbiol. 1990;154(1):60-6 - PubMed
  60. Bioinformatics. 2010 Jan 15;26(2):266-7 - PubMed
  61. JAMA. 2013 Apr 10;309(14):1502-10 - PubMed
  62. PLoS One. 2010 Mar 10;5(3):e9490 - PubMed
  63. Genome Biol. 2011;12(5):R44 - PubMed
  64. Genome Res. 2013 Jan;23(1):111-20 - PubMed
  65. Anaerobe. 2008 Feb;14(1):1-7 - PubMed
  66. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1128-33 - PubMed
  67. Cell. 2006 Feb 24;124(4):837-48 - PubMed
  68. Arch Microbiol. 1997 Oct;168(4):282-9 - PubMed
  69. Nat Methods. 2010 May;7(5):335-6 - PubMed
  70. Genome Res. 2009 Dec;19(12):2317-23 - PubMed
  71. Nat Rev Microbiol. 2013 Mar;11(3):205-12 - PubMed
  72. PLoS One. 2011;6(6):e20647 - PubMed
  73. Science. 2005 Jun 10;308(5728):1635-8 - PubMed
  74. Genome Biol. 2007;8(1):R10 - PubMed
  75. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  76. Nature. 2013 Oct 3;502(7469):96-9 - PubMed
  77. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  78. Eur J Biochem. 1972 Sep 25;29(3):553-62 - PubMed

Publication Types

Grant support