Display options
Share it on

Genes Nutr. 2014 Mar;9(2):385. doi: 10.1007/s12263-014-0385-7. Epub 2014 Feb 05.

Variation in genes related to hepatic lipid metabolism and changes in waist circumference and body weight.

Genes & nutrition

Karina Meidtner, Eva Fisher, Lars Angquist, Claus Holst, Karani S Vimaleswaran, Jolanda M A Boer, Jytte Halkjær, Giovanna Masala, Jane N Ostergaard, Lotte M Mortensen, Daphne L van der A, Anne Tjønneland, Domenico Palli, Kim Overvad, Nicholas J Wareham, Ruth J F Loos, Thorkild I A Sørensen, Heiner Boeing

Affiliations

  1. Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany, [email protected].

PMID: 24496996 PMCID: PMC3968289 DOI: 10.1007/s12263-014-0385-7

Abstract

We analysed single nucleotide polymorphisms (SNPs) tagging the genetic variability of six candidate genes (ATF6, FABP1, LPIN2, LPIN3, MLXIPL and MTTP) involved in the regulation of hepatic lipid metabolism, an important regulatory site of energy balance for associations with body mass index (BMI) and changes in weight and waist circumference. We also investigated effect modification by sex and dietary intake. Data of 6,287 individuals participating in the European prospective investigation into cancer and nutrition were included in the analyses. Data on weight and waist circumference were followed up for 6.9 ± 2.5 years. Association of 69 tagSNPs with baseline BMI and annual changes in weight as well as waist circumference were investigated using linear regression analysis. Interactions with sex, GI and intake of carbohydrates, fat as well as saturated, monounsaturated and polyunsaturated fatty acids were examined by including multiplicative SNP-covariate terms into the regression model. Neither baseline BMI nor annual weight or waist circumference changes were significantly associated with variation in the selected genes in the entire study population after correction for multiple testing. One SNP (rs1164) in LPIN2 appeared to be significantly interacting with sex (p = 0.0003) and was associated with greater annual weight gain in men (56.8 ± 23.7 g/year per allele, p = 0.02) than in women (-25.5 ± 19.8 g/year per allele, p = 0.2). With respect to gene-nutrient interaction, we could not detect any significant interactions when accounting for multiple testing. Therefore, out of our six candidate genes, LPIN2 may be considered as a candidate for further studies.

References

  1. Mol Genet Metab. 2004 Aug;82(4):296-303 - PubMed
  2. J Med Genet. 2005 Jul;42(7):551-7 - PubMed
  3. Am J Clin Nutr. 2012 Jun;95(6):1468-76 - PubMed
  4. Obesity (Silver Spring). 2012 Aug;20(8):1669-74 - PubMed
  5. PLoS Genet. 2013 Jun;9(6):e1003500 - PubMed
  6. BMJ. 1998 Apr 18;316(7139):1236-8 - PubMed
  7. Mol Genet Metab. 2008 Dec;95(4):229-32 - PubMed
  8. Diabetes. 2007 Dec;56(12):3020-6 - PubMed
  9. Clin Lipidol. 2011 Jun;6(3):293-303 - PubMed
  10. J Lipid Res. 2010 Jan;51(1):103-11 - PubMed
  11. Transplant Proc. 2011 Nov;43(9):3418-22 - PubMed
  12. J Hum Genet. 2006;51(6):567-574 - PubMed
  13. Hum Mutat. 2008 Jan;29(1):123-9 - PubMed
  14. Arterioscler Thromb Vasc Biol. 1998 May;18(5):756-61 - PubMed
  15. J Hum Genet. 2004;49(8):424-432 - PubMed
  16. Mol Cell Biochem. 1993 Jun 9-23;123(1-2):101-6 - PubMed
  17. J Lipid Res. 2006 Jul;47(7):1378-85 - PubMed
  18. Am J Clin Nutr. 2008 Mar;87(3):655-61 - PubMed
  19. Diabetes. 2007 Dec;56(12):2842-3 - PubMed
  20. Nat Genet. 2008 Feb;40(2):149-51 - PubMed
  21. Nature. 2010 Oct 28;467(7319):1061-73 - PubMed
  22. Int J Cancer. 2006 Jun 1;118(11):2832-9 - PubMed
  23. J Biol Chem. 2009 Mar 13;284(11):6763-72 - PubMed
  24. J Nutr Biochem. 2010 Nov;21(11):1015-32 - PubMed
  25. J Hum Genet. 2004;49(12):684-690 - PubMed
  26. Am J Hum Genet. 2009 Nov;85(5):628-42 - PubMed
  27. Obes Rev. 2005 May;6(2):175-6 - PubMed
  28. J Lipid Res. 2003 Jan;44(1):22-32 - PubMed
  29. Bioinformatics. 2008 Dec 15;24(24):2938-9 - PubMed
  30. Eur J Clin Nutr. 2009 Nov;63 Suppl 4:S188-205 - PubMed
  31. Hepatology. 2006 Nov;44(5):1191-205 - PubMed
  32. PLoS One. 2012;7(3):e31853 - PubMed
  33. PLoS One. 2011 Feb 24;6(2):e17436 - PubMed
  34. Am J Physiol Endocrinol Metab. 2007 Oct;293(4):E1078-84 - PubMed
  35. Biol Cell. 2012 May;104(5):259-70 - PubMed
  36. J Lipid Res. 2009 Apr;50 Suppl:S109-14 - PubMed
  37. Nature. 2005 Oct 27;437(7063):1299-320 - PubMed
  38. Diabetes. 2001 Mar;50(3):675-80 - PubMed
  39. Mol Biol Rep. 2009 Sep;36(7):1819-24 - PubMed
  40. J Lipid Res. 2002 Jan;43(1):51-8 - PubMed
  41. Circulation. 2004 May 18;109(19):2279-84 - PubMed
  42. J Lipid Res. 1999 Aug;40(8):1371-83 - PubMed
  43. Endocr J. 2008 Aug;55(4):617-24 - PubMed
  44. Diabetes. 2006 Mar;55(3):839-42 - PubMed
  45. J Biol Chem. 2009 Oct 23;284(43):29968-78 - PubMed
  46. Public Health Nutr. 2002 Dec;5(6B):1113-24 - PubMed
  47. Ann Acad Med Singap. 2009 Jan;38(1):57-9 - PubMed
  48. Nat Genet. 2005 Nov;37(11):1217-23 - PubMed
  49. Arterioscler Thromb Vasc Biol. 2009 Sep;29(9):1322-7 - PubMed
  50. J Clin Endocrinol Metab. 2007 Jul;92(7):2720-5 - PubMed
  51. Bioinformatics. 2005 Jan 15;21(2):263-5 - PubMed
  52. PLoS One. 2011;6(11):e27455 - PubMed
  53. Int J Epidemiol. 1997;26 Suppl 1:S6-14 - PubMed
  54. EMBO J. 2004 Feb 25;23(4):950-8 - PubMed
  55. Biochim Biophys Acta. 2011 Aug;1812(8):995-1006 - PubMed
  56. Atherosclerosis. 2002 Feb;160(2):317-24 - PubMed
  57. Biochim Biophys Acta. 2000 Jun 26;1486(1):72-83 - PubMed
  58. Mol Genet Metab. 2007 Jul;91(3):278-84 - PubMed
  59. Subcell Biochem. 2008;49:3-47 - PubMed
  60. World Health Organ Tech Rep Ser. 2000;894:i-xii, 1-253 - PubMed
  61. Ageing Res Rev. 2010 Jul;9(3):211-7 - PubMed
  62. Nat Genet. 2008 Feb;40(2):161-9 - PubMed
  63. Eur J Clin Nutr. 2011 Mar;65(3):357-67 - PubMed
  64. Am J Clin Nutr. 2012 May;95(5):1254-60 - PubMed

Publication Types

Grant support