Display options
Share it on

Biomicrofluidics. 2014 Feb 25;8(1):016503. doi: 10.1063/1.4865855. eCollection 2014 Jan.

Microfluidic device capable of medium recirculation for non-adherent cell culture.

Biomicrofluidics

Angela R Dixon, Shrinidhi Rajan, Chuan-Hsien Kuo, Tom Bersano, Rachel Wold, Nobuyuki Futai, Shuichi Takayama, Geeta Mehta

Affiliations

  1. Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
  2. Department of Mechanical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA ; Mobility and Thermal Management Department, General Dynamics Land Systems, Sterling Heights, Michigan 48310, USA.
  3. Google, Inc., 1600 Amphitheatre Parkway Mountain View, California 94043, USA ; University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
  4. Department of Mechanical Engineering, Shibaura Institute of Technology, 3-5-1 Toyosu, Koto-ku, Tokyo 135-8548, Japan.
  5. Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA ; Department of Macromolecular Science and Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
  6. Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA ; Department of Materials Science and Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.

PMID: 24753733 PMCID: PMC3977789 DOI: 10.1063/1.4865855

Abstract

We present a microfluidic device designed for maintenance and culture of non-adherent mammalian cells, which enables both recirculation and refreshing of medium, as well as easy harvesting of cells from the device. We demonstrate fabrication of a novel microfluidic device utilizing Braille perfusion for peristaltic fluid flow to enable switching between recirculation and refresh flow modes. Utilizing fluid flow simulations and the human promyelocytic leukemia cell line, HL-60, non-adherent cells, we demonstrate the utility of this RECIR-REFRESH device. With computer simulations, we profiled fluid flow and concentration gradients of autocrine factors and found that the geometry of the cell culture well plays a key role in cell entrapping and retaining autocrine and soluble factors. We subjected HL-60 cells, in the device, to a treatment regimen of 1.25% dimethylsulfoxide, every other day, to provoke differentiation and measured subsequent expression of CD11b on day 2 and day 4 and tumor necrosis factor-alpha (TNF-α) on day 4. Our findings display perfusion sensitive CD11b expression, but not TNF-α build-up, by day 4 of culture, with a 1:1 ratio of recirculation to refresh flow yielding the greatest increase in CD11b levels. RECIR-REFRESH facilitates programmable levels of cell differentiation in a HL-60 non-adherent cell population and can be expanded to other types of non-adherent cells such as hematopoietic stem cells.

References

  1. Blood. 1979 Sep;54(3):713-33 - PubMed
  2. Cell Mol Bioeng. 2010 Sep 1;3(3):213-228 - PubMed
  3. Blood. 1990 Feb 1;75(3):626-32 - PubMed
  4. Biomaterials. 2007 Jan;28(3):559-66 - PubMed
  5. Lab Chip. 2006 Dec;6(12):1484-6 - PubMed
  6. Anal Bioanal Chem. 2006 Jun;385(3):408-12 - PubMed
  7. Biomaterials. 2008 Jun;29(17):2646-55 - PubMed
  8. Lab Chip. 2007 Jun;7(6):756-62 - PubMed
  9. Lab Chip. 2010 Apr 7;10(7):857-63 - PubMed
  10. Anal Chem. 2009 May 15;81(10):3714-22 - PubMed
  11. FEBS Lett. 1997 Aug 4;412(3):603-9 - PubMed
  12. Ann Biomed Eng. 2008 Apr;36(4):554-62 - PubMed
  13. Int Immunopharmacol. 2006 Jul;6(7):1204-13 - PubMed
  14. Biomed Microdevices. 2007 Apr;9(2):123-34 - PubMed
  15. Gene. 2008 Aug 1;419(1-2):16-26 - PubMed
  16. Leuk Res. 1998 Jun;22(6):537-47 - PubMed
  17. Methods Mol Biol. 2009;571:167-77 - PubMed
  18. Integr Biol (Camb). 2009 Dec;1(11-12):649-54 - PubMed
  19. Lab Chip. 2007 Nov;7(11):1497-503 - PubMed
  20. Lab Chip. 2004 Oct;4(5):425-30 - PubMed
  21. BMC Cell Biol. 2006 Feb 28;7:11 - PubMed
  22. Anal Chim Acta. 2009 Sep 7;649(2):141-57 - PubMed
  23. J Vasc Res. 2005 Jan-Feb;42(1):77-89 - PubMed
  24. Lab Chip. 2006 Jan;6(1):149-54 - PubMed
  25. Leukemia. 1992 Oct;6(10):1036-42 - PubMed
  26. J Hematol Oncol. 2011 Apr 25;4:20 - PubMed
  27. Biotechnol Bioeng. 2009 Aug 1;103(5):966-74 - PubMed
  28. Biophys J. 2001 Oct;81(4):2020-34 - PubMed
  29. BMC Syst Biol. 2009 Feb 18;3:20 - PubMed
  30. Anal Chem. 1997 Apr 15;69(8):1564-8 - PubMed
  31. J Leukoc Biol. 1985 Apr;37(4):407-22 - PubMed
  32. Lab Chip. 2008 Oct;8(10):1700-12 - PubMed
  33. Int J Hematol. 2008 Mar;87(2):189-194 - PubMed
  34. Am J Physiol Endocrinol Metab. 2012 Feb 15;302(4):E389-95 - PubMed
  35. J Orthop Res. 2009 Oct;27(10):1280-7 - PubMed
  36. Annu Rev Anal Chem (Palo Alto Calif). 2008;1:423-49 - PubMed
  37. Exp Hematol. 1987 Oct;15(9):928-35 - PubMed
  38. Lab Chip. 2012 Jun 21;12(12):2240-6 - PubMed
  39. Anal Chem. 2005 Jul 1;77(13):3993-9 - PubMed
  40. Biotechnol Bioeng. 2006 Jun 20;94(3):596-609 - PubMed
  41. Biophys J. 1995 Oct;69(4):1584-95 - PubMed

Publication Types

Grant support