Display options
Share it on

Biotechnol Biofuels. 2014 May 30;7:81. doi: 10.1186/1754-6834-7-81. eCollection 2014.

Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga Nannochloropsis oceanica.

Biotechnology for biofuels

Yandu Lu, Wenxu Zhou, Li Wei, Jing Li, Jing Jia, Fei Li, Steven M Smith, Jian Xu

Affiliations

  1. Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
  2. Australian Research Council, Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

PMID: 24920959 PMCID: PMC4052811 DOI: 10.1186/1754-6834-7-81

Abstract

BACKGROUND: Sterols are vital structural and regulatory components in eukaryotic cells; however, their biosynthetic pathways and functional roles in microalgae remain poorly understood.

RESULTS: In the oleaginous microalga Nannochloropsis oceanica, the sterol biosynthetic pathway produces phytosterols as minor products and cholesterol as the major product. The evidence together with their deduced biosynthetic pathways suggests that N. oceanica exhibits features of both higher plants and mammals. Temporal tracking of sterol profiles and sterol-biosynthetic transcripts in response to changes in light intensity and nitrogen supply reveal that sterols play roles in cell proliferation, chloroplast differentiation, and photosynthesis. Furthermore, the dynamics of fatty acid (FA) and FA-biosynthetic transcripts upon chemical inhibitor-induced sterol depletion reveal possible co-regulation of sterol production and FA synthesis, in that the squalene epoxidase inhibitor terbinafine reduces sterol content yet significantly elevates free FA production. Thus, a feedback regulation of sterol and FA homeostasis is proposed, with the 1-deoxy-D-xylulose 5-phosphate synthase (DXS, the committed enzyme in isoprenoid and sterol biosynthesis) gene potentially subject to feedback regulation by sterols.

CONCLUSION: These findings reveal features of sterol function and biosynthesis in microalgae and suggest new genetic engineering or chemical biology approaches for enhanced oil production in microalgae.

Keywords: Cholesterol biosynthetic pathway; Fatty acid biosynthesis; Feedback regulation; Nannochloropsis

References

  1. Plant J. 2009 Jul;59(1):63-76 - PubMed
  2. Plant Physiol. 2003 Oct;133(2):448-55 - PubMed
  3. Proc Natl Acad Sci U S A. 2007 May 1;104(18):7705-10 - PubMed
  4. Plant Physiol. 2005 Jun;138(2):573-7 - PubMed
  5. J Lipid Res. 2009 Apr;50 Suppl:S15-27 - PubMed
  6. Nucleic Acids Res. 2003 Jul 1;31(13):3497-500 - PubMed
  7. J Lipid Res. 2007 Mar;48(3):665-73 - PubMed
  8. Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):3163-8 - PubMed
  9. Nat Rev Genet. 2000 Nov;1(2):116-25 - PubMed
  10. Plant Physiol. 2010 Jun;153(2):741-56 - PubMed
  11. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4242-7 - PubMed
  12. Plant Cell. 2014 Apr 1;26(4):1645-1665 - PubMed
  13. Syst Biol. 2010 May;59(3):307-21 - PubMed
  14. Lipids. 2010 Feb;45(2):179-87 - PubMed
  15. PLoS Genet. 2014 Jan;10(1):e1004094 - PubMed
  16. Syst Biol. 2007 Aug;56(4):564-77 - PubMed
  17. Nucleic Acids Res. 2012 Jan;40(Database issue):D302-5 - PubMed
  18. Science. 2010 Aug 13;329(5993):796-9 - PubMed
  19. Nature. 2005 Sep 29;437(7059):741-5 - PubMed
  20. Biochem Soc Trans. 2000 Dec;28(6):792-3 - PubMed
  21. BMC Genomics. 2013 Aug 05;14:534 - PubMed
  22. J Exp Bot. 2009;60(7):2055-64 - PubMed
  23. PLoS Genet. 2012;8(11):e1003064 - PubMed
  24. Biochim Biophys Acta. 1972 Sep 1;282(1):85-92 - PubMed
  25. Nat Commun. 2012 Feb 21;3:686 - PubMed
  26. Plant Cell. 2000 Jun;12(6):853-70 - PubMed
  27. Mol Genet Genomics. 2004 Nov;272(4):470-9 - PubMed
  28. FEMS Microbiol Lett. 1998 Dec 15;169(2):369-73 - PubMed
  29. Nature. 2012 Aug 16;488(7411):329-35 - PubMed
  30. Plant Cell. 2012 Sep;24(9):3708-24 - PubMed
  31. Evolution. 2012 Sep;66(9):2961-8 - PubMed
  32. Plant Cell. 1995 Dec;7(12):2115-27 - PubMed
  33. Genome Biol Evol. 2009 Sep 10;1:364-81 - PubMed
  34. Lipids. 1996 Sep;31(9):989-94 - PubMed
  35. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3948-53 - PubMed
  36. Curr Biol. 1997 Mar 1;7(3):R172-4 - PubMed
  37. Curr Opin Cell Biol. 2007 Apr;19(2):215-22 - PubMed
  38. Plant Physiol. 1995 Dec;109(4):1395-1403 - PubMed
  39. Plant Cell. 2010 Jan;22(1):234-48 - PubMed
  40. Trends Plant Sci. 2001 Feb;6(2):78-84 - PubMed
  41. J Mol Evol. 2004 Jul;59(1):51-8 - PubMed
  42. J Lipid Res. 2012 Aug;53(8):1636-45 - PubMed
  43. Appl Microbiol Biotechnol. 2003 Jan;60(5):495-506 - PubMed
  44. Chem Rev. 2011 Oct 12;111(10):6423-51 - PubMed
  45. J Clin Invest. 2002 May;109(9):1125-31 - PubMed
  46. Nat Chem Biol. 2009 May;5(5):301-7 - PubMed
  47. Bioinformatics. 2011 Apr 15;27(8):1164-5 - PubMed
  48. Science. 2009 Apr 10;324(5924):268-72 - PubMed
  49. Plant Physiol. 2003 Mar;131(3):1258-69 - PubMed
  50. Plant Physiol. 2005 Aug;138(4):2033-47 - PubMed
  51. Plant J. 2001 Mar;25(6):605-15 - PubMed
  52. Evolution. 2010 Jul;64(7):2179-83 - PubMed
  53. Plant Physiol. 2002 Sep;130(1):334-46 - PubMed
  54. Nat Chem Biol. 2009 May;5(5):268-72 - PubMed
  55. Plant Cell. 2002 Sep;14(9):1995-2000 - PubMed
  56. Plant Physiol. 1983 Apr;71(4):756-62 - PubMed
  57. Plant J. 2004 Apr;38(2):227-43 - PubMed
  58. J Biol Chem. 1995 Oct 27;270(43):25578-83 - PubMed
  59. Plant Physiol. 2013 Jun;162(2):1110-26 - PubMed
  60. Plant Physiol. 2010 Jan;152(1):192-205 - PubMed
  61. Cold Spring Harb Symp Quant Biol. 2002;67:491-8 - PubMed
  62. Chem Rev. 2006 Jun;106(6):2476-530 - PubMed
  63. Prog Lipid Res. 2011 Oct;50(4):403-10 - PubMed
  64. Nat Chem Biol. 2009 May;5(5):283-91 - PubMed
  65. Nature. 2008 Feb 14;451(7180):783-8 - PubMed

Publication Types