Display options
Share it on

Front Mol Neurosci. 2014 Jun 27;7:60. doi: 10.3389/fnmol.2014.00060. eCollection 2014.

PDE9A is expressed in the inner retina and contributes to the normal shape of the photopic ERG waveform.

Frontiers in molecular neuroscience

Anuradha Dhingra, Shanti R Tummala, Arkady Lyubarsky, Noga Vardi

Affiliations

  1. Retina Lab, Department of Neuroscience, University of Pennsylvania Philadelphia, PA, USA.
  2. Department of Ophthalmology, University of Pennsylvania Philadelphia, PA, USA.

PMID: 25018695 PMCID: PMC4073215 DOI: 10.3389/fnmol.2014.00060

Abstract

The ubiquitous second messenger cGMP is synthesized by guanylyl cyclase and hydrolyzed by phosphodiesterase (PDE). cGMP mediates numerous signaling pathways in multiple tissues. In the retina, cGMP regulates signaling in nearly every cell class including photoreceptors, bipolar cells, amacrine cells, and ganglion cells. In order to understand the specific role of cGMP and its regulating enzymes in different cell types, it is first necessary to localize these components and dissect their influence on the circuits. Here we tested the contribution of PDE9A to retinal processing by recording the electroretinograms (ERG) of PDE9A (™/™) (KO) mice and by localizing the enzyme. We found that while the scotopic ERG of KO was the same as that of wild type (WT) in both amplitude and kinetics, the photopic ERG was greatly affected. The greatest effect was on the recovery of the b-wave; the falling phase and the b-wave duration were significantly longer in the KO mice for all photopic stimuli (UV, green, or saturating white flashes). The rising phase was slower in KO than in WT for UV and green stimuli. For certain stimuli, amplitudes of both the a- and b-waves were smaller than in WT. Using Lac-Z expression in KO retinas as a reporter for PDE9A expression pattern, we found that PDE9A is localized to GABA-positive and GABA-negative amacrine cells, and likely also to certain types of ganglion cells. Our results indicate that PDE9A, by controlling the level of cGMP, modulates inhibitory processes within the cone pathway. We speculate that these circuits involve NO/cGMP signaling pathways.

Keywords: ERG; amacrine cells; ciliary body; cone pathways; cyclic GMP; serial inhibition

References

  1. Annu Rev Pharmacol Toxicol. 1996;36:403-27 - PubMed
  2. Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):332-7 - PubMed
  3. J Neurosci. 1995 May;15(5 Pt 1):3571-82 - PubMed
  4. J Comp Neurol. 1985 Mar 22;233(4):473-80 - PubMed
  5. J Neurosci. 1999 Jan 1;19(1):442-55 - PubMed
  6. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19174-8 - PubMed
  7. Exp Eye Res. 2008 Jun;86(6):914-28 - PubMed
  8. J Neurophysiol. 2007 Dec;98(6):3423-35 - PubMed
  9. Vis Neurosci. 1998 Sep-Oct;15(5):945-55 - PubMed
  10. Vis Neurosci. 2005 Sep-Oct;22(5):631-6 - PubMed
  11. J Neurosci. 1999 Apr 15;19(8):2938-44 - PubMed
  12. Vision Res. 2005 Dec;45(28):3469-86 - PubMed
  13. J Biol Chem. 1998 Jun 19;273(25):15559-64 - PubMed
  14. Methods Mol Biol. 2005;307:75-84 - PubMed
  15. Vis Neurosci. 2003 Mar-Apr;20(2):165-76 - PubMed
  16. J Neurosci. 1987 Apr;7(4):1189-97 - PubMed
  17. Exp Eye Res. 2009 Jun 15;89(1):49-62 - PubMed
  18. Invest Ophthalmol Vis Sci. 1994 Jan;35(1):9-32 - PubMed
  19. J Neurosci. 2010 Mar 3;30(9):3347-57 - PubMed
  20. Vis Neurosci. 2003 May-Jun;20(3):297-306 - PubMed
  21. J Comp Neurol. 2007 May 1;502(1):734-45 - PubMed
  22. J Neurosci. 2000 Mar 15;20(6):2209-17 - PubMed
  23. J Comp Neurol. 1995 Jan 16;351(3):374-84 - PubMed
  24. Physiol Rev. 1995 Oct;75(4):725-48 - PubMed
  25. J Physiol. 2004 Feb 15;555(Pt 1):153-73 - PubMed
  26. Vision Res. 2000;40(6):579-89 - PubMed
  27. J Neurosci. 2004 Jul 21;24(29):6621-8 - PubMed
  28. J Neurosci. 1995 Jul;15(7 Pt 2):5106-29 - PubMed
  29. J Physiol. 2008 May 15;586(10):2551-80 - PubMed
  30. J Neurosci. 1996 Jan 15;16(2):563-71 - PubMed
  31. Proc Biol Sci. 1990 Nov 22;242(1304):91-4 - PubMed
  32. Nature. 1995 Oct 26;377(6551):734-7 - PubMed
  33. Invest Ophthalmol Vis Sci. 1994 Jan;35(1):295-309 - PubMed
  34. J Neurophysiol. 2013 Jul;110(1):153-61 - PubMed
  35. Nature. 1993 Jan 7;361(6407):76-9 - PubMed
  36. Proc Biol Sci. 1992 Jan 22;247(1318):21-5 - PubMed
  37. Vision Res. 2004 Dec;44(28):3235-51 - PubMed
  38. Rev Physiol Biochem Pharmacol. 1999;135:67-104 - PubMed
  39. Nature. 1990 Jul 19;346(6281):269-71 - PubMed
  40. Nat Neurosci. 2009 Sep;12(9):1197-204 - PubMed
  41. Vis Neurosci. 2005 Nov-Dec;22(6):825-38 - PubMed
  42. J Neurosci. 1996 Nov 1;16(21):6807-29 - PubMed
  43. J Neurosci. 1998 Nov 1;18(21):8936-46 - PubMed
  44. Br J Ophthalmol. 2007 Mar;91(3):379-84 - PubMed
  45. Vision Res. 2002 Apr;42(9):1081-7 - PubMed
  46. Vis Neurosci. 2011 Jan;28(1):95-108 - PubMed
  47. Vis Neurosci. 1999 Mar-Apr;16(2):379-89 - PubMed
  48. J Comp Neurol. 2008 Oct 10;510(5):484-96 - PubMed
  49. Clin Exp Pharmacol Physiol. 1997 Aug;24(8):611-8 - PubMed
  50. Neuron. 1994 Jan;12(1):155-65 - PubMed
  51. J Physiol. 2002 Jul 1;542(Pt 1):211-20 - PubMed
  52. Trends Neurosci. 1992 Aug;15(8):291-8 - PubMed
  53. Doc Ophthalmol. 2005 Jul;111(1):23-31 - PubMed

Publication Types

Grant support