Display options
Share it on

Sci Rep. 2014 Aug 12;4:6037. doi: 10.1038/srep06037.

Single adatom dynamics at monatomic steps of free-standing few-layer reduced graphene.

Scientific reports

Haixin Chang, Mitsuhiro Saito, Takuro Nagai, Yunye Liang, Yoshiyuki Kawazoe, Zhongchang Wang, Hongkai Wu, Koji Kimoto, Yuichi Ikuhara

Affiliations

  1. State Key Laboratory of Material Processing and Die &Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
  2. WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
  3. National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.
  4. New Industry Creation Hatchery Center, Tohoku University, Aobaku, Sendai, 980-8579 Japan.
  5. 1] New Industry Creation Hatchery Center, Tohoku University, Aobaku, Sendai, 980-8579 Japan [2] Kutateladze Institute of Thermophysics, Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia.
  6. 1] WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan [2] Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong.
  7. 1] WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan [2] Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan.

PMID: 25113125 PMCID: PMC4129415 DOI: 10.1038/srep06037

Abstract

Steps and their associated adatoms extensively exist and play prominent roles in affecting surface properties of materials. Such impacts should be especially pronounced in two-dimensional, atomically-thin membranes like graphene. However, how single adatom behaves at monatomic steps of few-layer graphene is still illusive. Here, we report dynamics of individual adatom at monatomic steps of free-standing few-layer reduced graphene under the electron beam radiations, and demonstrate the prevalent existence of monatomic steps even down to unexpectedly ultrasmall lateral size of a circular diameter of ~5 Å. Single adatom prefers to stay at the edges of the atomic steps of few-layer reduced graphene and evolve with the steps. Moreover, we also find that how the single adatom behaves at atomic step edges can be remarkably influenced by the type of adatoms and step edges. Such single adatoms at monatomic steps and ultrasmall atomic steps open up a new window for surface physics and chemistry for graphene-based as well as other two-dimensional materials.

References

  1. Nat Nanotechnol. 2009 Jun;4(6):383-8 - PubMed
  2. Science. 2011 Apr 8;332(6026):228-31 - PubMed
  3. Nature. 2010 Mar 25;464(7288):571-4 - PubMed
  4. Nature. 2011 Jan 20;469(7330):389-92 - PubMed
  5. Nano Lett. 2012 Jan 11;12(1):141-4 - PubMed
  6. Angew Chem Int Ed Engl. 2005 Aug 12;44(32):5121-6 - PubMed
  7. Angew Chem Int Ed Engl. 2012 Jan 9;51(2):500-3 - PubMed
  8. Nat Nanotechnol. 2010 Sep;5(9):655-9 - PubMed
  9. Nat Mater. 2011 Mar;10(3):209-15 - PubMed
  10. Nat Mater. 2012 Sep;11(9):775-80 - PubMed
  11. Phys Rev B Condens Matter. 1994 May 15;49(20):14251-14269 - PubMed
  12. Nano Lett. 2009 Jan;9(1):30-5 - PubMed
  13. Phys Rev Lett. 2007 Nov 23;99(21):216802 - PubMed
  14. Science. 2006 Aug 18;313(5789):951-4 - PubMed
  15. Nature. 2004 Jan 29;427(6973):426-9 - PubMed
  16. Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561 - PubMed
  17. Nature. 2010 Dec 23;468(7327):1088-90 - PubMed
  18. Science. 2010 Sep 3;329(5996):1188-91 - PubMed
  19. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 - PubMed
  20. Science. 2008 Feb 29;319(5867):1229-32 - PubMed
  21. Nano Lett. 2010 Apr 14;10(4):1144-8 - PubMed
  22. Nano Lett. 2009 Mar;9(3):1058-63 - PubMed
  23. Nat Mater. 2008 Feb;7(2):151-7 - PubMed
  24. Nat Nanotechnol. 2008 Nov;3(11):676-81 - PubMed
  25. Chem Soc Rev. 2010 Jan;39(1):228-40 - PubMed
  26. Adv Mater. 2010 Oct 25;22(40):4467-72 - PubMed
  27. Nature. 2006 Jul 20;442(7100):282-6 - PubMed
  28. Adv Mater. 2010 Nov 16;22(43):4872-6 - PubMed
  29. Nature. 2008 Jul 17;454(7202):319-22 - PubMed
  30. Nature. 2009 Jun 11;459(7248):820-3 - PubMed
  31. Nature. 2007 Mar 1;446(7131):60-3 - PubMed
  32. Nano Lett. 2012 Jan 11;12(1):414-9 - PubMed
  33. Phys Rev Lett. 2008 Sep 12;101(11):115502 - PubMed
  34. Nano Lett. 2013 Apr 10;13(4):1468-75 - PubMed
  35. Science. 2009 Mar 27;323(5922):1701-5 - PubMed
  36. Science. 2011 Aug 19;333(6045):999-1003 - PubMed

Publication Types