Display options
Share it on

Front Physiol. 2014 Jun 24;5:228. doi: 10.3389/fphys.2014.00228. eCollection 2014.

Vitamin D and adipose tissue-more than storage.

Frontiers in physiology

Shivaprakash J Mutt, Elina Hyppönen, Juha Saarnio, Marjo-Riitta Järvelin, Karl-Heinz Herzig

Affiliations

  1. Department of Physiology, Institute of Biomedicine, University of Oulu Oulu, Finland ; Biocenter of Oulu, University of Oulu Oulu, Finland.
  2. School of Population Health and Sansom Institute, University of South Australia Adelaide, SA, Australia ; South Australian Health and Medical Research Institute Adelaide, SA, Australia ; Population, Policy and Practice, Institute of Child Health, University College London London, UK.
  3. Department of Surgery, Oulu University Hospital, University of Oulu Oulu, Finland.
  4. Biocenter of Oulu, University of Oulu Oulu, Finland ; Unit of Primary Care, Institute of Health Sciences, University of Oulu, Oulu University Hospital Oulu, Finland ; Department of Children, Young People and Families, National Institute for Health and Welfare Oulu, Finland ; Department of Epidemiology and Biostatistics, and MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London London, UK.
  5. Department of Physiology, Institute of Biomedicine, University of Oulu Oulu, Finland ; Biocenter of Oulu, University of Oulu Oulu, Finland ; Medical Research Center Oulu and Oulu University Hospital Oulu, Finland.

PMID: 25009502 PMCID: PMC4067728 DOI: 10.3389/fphys.2014.00228

Abstract

The pandemic increase in obesity is inversely associated with vitamin D levels. While a higher BMI was causally related to lower 25-hydroxyvitamin D (25(OH)D), no evidence was obtained for a BMI lowering effect by higher 25(OH)D. Some of the physiological functions of 1,25(OH)2D3 (1,25-dihydroxycholecalciferol or calcitriol) via its receptor within the adipose tissue have been investigated such as its effect on energy balance, adipogenesis, adipokine, and cytokine secretion. Adipose tissue inflammation has been recognized as the key component of metabolic disorders, e.g., in the metabolic syndrome. The adipose organ secretes more than 260 different proteins/peptides. However, the molecular basis of the interactions of 1,25(OH)2D3, vitamin D binding proteins (VDBPs) and nuclear vitamin D receptor (VDR) after sequestration in adipose tissue and their regulations are still unclear. 1,25(OH)2D3 and its inactive metabolites are known to inhibit the formation of adipocytes in mouse 3T3-L1 cell line. In humans, 1,25(OH)2D3 promotes preadipocyte differentiation under cell culture conditions. Further evidence of its important functions is given by VDR knock out (VDR(-/-)) and CYP27B1 knock out (CYP27B1 (-/-)) mouse models: Both VDR(-/-) and CYP27B1(-/-) models are highly resistant to the diet induced weight gain, while the specific overexpression of human VDR in adipose tissue leads to increased adipose tissue mass. The analysis of microarray datasets from human adipocytes treated with macrophage-secreted products up-regulated VDR and CYP27B1 genes indicating the capacity of adipocytes to even produce active 1,25(OH)2D3. Experimental studies demonstrate that 1,25(OH)2D3 has an active role in adipose tissue by modulating inflammation, adipogenesis and adipocyte secretion. Yet, further in vivo studies are needed to address the effects and the effective dosages of vitamin D in human adipose tissue and its relevance in the associated diseases.

Keywords: 1,25-dihydroxycholecalciferol or calcitriol; adipogenesis; adipokines; adipose tissue; gene regulation; secretion; vitamin D binding protein

References

  1. J Cell Biochem. 2007 May 1;101(1):80-8 - PubMed
  2. J Biol Chem. 2006 Apr 21;281(16):11205-13 - PubMed
  3. BMC Med. 2013 Jul 12;11:163 - PubMed
  4. J Cell Sci. 2011 Aug 15;124(Pt 16):2681-6 - PubMed
  5. PLoS Med. 2013;10(2):e1001383 - PubMed
  6. Horm Metab Res. 2013 Jun;45(6):456-62 - PubMed
  7. PLoS One. 2011 Jan 26;6(1):e16479 - PubMed
  8. Physiol Behav. 2008 May 23;94(2):206-18 - PubMed
  9. N Engl J Med. 2014 Feb 27;370(9):880-1 - PubMed
  10. Nature. 2006 Dec 14;444(7121):860-7 - PubMed
  11. Obesity (Silver Spring). 2007 Feb;15(2):340-8 - PubMed
  12. FASEB J. 2012 Nov;26(11):4400-7 - PubMed
  13. J Anim Physiol Anim Nutr (Berl). 2013 Aug;97(4):675-83 - PubMed
  14. Mol Cell Biol. 2014 Mar;34(6):939-54 - PubMed
  15. Mol Endocrinol. 2005 Aug;19(8):2060-73 - PubMed
  16. Int J Circumpolar Health. 2008 Jun;67(2-3):164-78 - PubMed
  17. J Nutrigenet Nutrigenomics. 2008;1(1-2):30-48 - PubMed
  18. Lipids Health Dis. 2011 Feb 27;10:37 - PubMed
  19. Nature. 2006 Dec 14;444(7121):875-80 - PubMed
  20. Lancet. 1989 Nov 4;2(8671):1104-5 - PubMed
  21. Science. 2000 Aug 11;289(5481):950-3 - PubMed
  22. BMJ. 2014 Apr 01;348:g1903 - PubMed
  23. J Nutr Biochem. 2009 Jul;20(7):512-20 - PubMed
  24. Genes Dev. 2008 Nov 1;22(21):2941-52 - PubMed
  25. PLoS One. 2013 Jun 18;8(6):e66515 - PubMed
  26. J Steroid Biochem Mol Biol. 2009 Jul;115(3-5):91-7 - PubMed
  27. Nucleic Acids Res. 2011 Nov;39(21):9181-93 - PubMed
  28. Nature. 2006 Dec 14;444(7121):881-7 - PubMed
  29. Mol Cell Endocrinol. 2010 Jan 15;314(1):1-16 - PubMed
  30. Genes Dev. 2008 Nov 1;22(21):2953-67 - PubMed
  31. J Clin Invest. 2003 Dec;112(12):1785-8 - PubMed
  32. Eur J Nutr. 2012 Apr;51(3):335-42 - PubMed
  33. Am J Clin Nutr. 2000 Sep;72(3):690-3 - PubMed
  34. Mol Cell Proteomics. 2012 Jan;11(1):M111.010504 - PubMed
  35. Int J Mol Med. 2012 Nov;30(5):1219-24 - PubMed
  36. Am J Physiol Endocrinol Metab. 2006 May;290(5):E916-24 - PubMed
  37. Dev Cell. 2010 May 18;18(5):763-74 - PubMed
  38. PLoS One. 2013 Apr 24;8(4):e61707 - PubMed
  39. J Steroid Biochem Mol Biol. 2009 Mar;114(1-2):78-84 - PubMed
  40. N Engl J Med. 2006 Aug 24;355(8):763-78 - PubMed
  41. Front Physiol. 2014 Apr 03;5:122 - PubMed
  42. Physiol Rev. 2013 Jan;93(1):1-21 - PubMed
  43. Acta Physiol (Oxf). 2010 Oct;200(2):107-27 - PubMed
  44. PLoS One. 2012;7(1):e30948 - PubMed
  45. Z Rheumatol. 2000;59 Suppl 1:24-7 - PubMed
  46. J Nutr Biochem. 2008 Jun;19(6):392-9 - PubMed
  47. PLoS One. 2012;7(12):e52171 - PubMed
  48. Br J Nutr. 2012 Dec 14;108(11):1915-23 - PubMed
  49. Genome Res. 2010 Oct;20(10):1352-60 - PubMed
  50. Biochem Biophys Res Commun. 2010 May 21;396(1):101-4 - PubMed
  51. Biochem J. 2009 Dec 14;425(1):215-23 - PubMed
  52. J Cell Physiol. 2011 Aug;226(8):2016-24 - PubMed
  53. Cell. 2013 Apr 25;153(3):601-13 - PubMed
  54. J Cell Physiol. 2013 Oct;228(10):2024-36 - PubMed
  55. Nature. 2006 Dec 14;444(7121):840-6 - PubMed
  56. Nutrition. 2001 Jan;17(1):26-30 - PubMed
  57. J Biol Chem. 2011 Sep 30;286(39):33804-10 - PubMed
  58. Histochem Cell Biol. 1995 Dec;104(6):417-27 - PubMed
  59. Chem Biol Interact. 2007 Nov 20;170(2):114-23 - PubMed
  60. PLoS One. 2014 Apr 30;9(4):e96105 - PubMed
  61. Cell Metab. 2005 Nov;2(5):283-95 - PubMed
  62. Anal Chem. 2012 Jan 17;84(2):956-62 - PubMed
  63. Endocrinology. 2009 Feb;150(2):651-61 - PubMed
  64. Dev Cell. 2006 Apr;10(4):461-71 - PubMed
  65. Mol Nutr Food Res. 2012 Dec;56(12):1771-82 - PubMed
  66. Mol Cell Endocrinol. 2010 Apr 29;318(1-2):10-4 - PubMed
  67. Mol Endocrinol. 2012 Jan;26(1):37-51 - PubMed
  68. Lancet. 2010 Jul 17;376(9736):180-8 - PubMed
  69. Cell. 1993 May 21;73(4):725-34 - PubMed
  70. J Cell Biochem. 2011 Feb;112(2):488-97 - PubMed
  71. Int J Obes (Lond). 2013 Mar;37(3):357-65 - PubMed
  72. Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E820-8 - PubMed

Publication Types