Display options
Share it on

Front Endocrinol (Lausanne). 2014 Jun 25;5:101. doi: 10.3389/fendo.2014.00101. eCollection 2014.

Testosterone increases circulating dehydroepiandrosterone sulfate levels in the male rhesus macaque.

Frontiers in endocrinology

Krystina G Sorwell, Steven G Kohama, Henryk F Urbanski

Affiliations

  1. Division of Neuroscience, Oregon National Primate Research Center , Beaverton, OR , USA ; Department of Behavioral Neuroscience, Oregon Health & Sciences University , Portland, OR , USA.
  2. Division of Neuroscience, Oregon National Primate Research Center , Beaverton, OR , USA.
  3. Division of Neuroscience, Oregon National Primate Research Center , Beaverton, OR , USA ; Department of Behavioral Neuroscience, Oregon Health & Sciences University , Portland, OR , USA ; Department of Physiology and Pharmacology, Oregon Health & Sciences University , Portland, OR , USA ; Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center , Beaverton, OR , USA.

PMID: 25009533 PMCID: PMC4070064 DOI: 10.3389/fendo.2014.00101

Abstract

The adrenal steroid dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) are two of the most abundant hormones in the human circulation. Furthermore, they are released in a circadian pattern and show a marked age-associated decline. Adult levels of DHEA and DHEAS are significantly higher in males than in females, but the reason for this sexual dimorphism is unclear. In the present study, we administered supplementary androgens [DHEA, testosterone and 5α-dihydrotestosterone (DHT)] to aged male rhesus macaques (Macaca mulatta). While this paradigm increased circulating DHEAS immediately after DHEA administration, an increase was also observed following either testosterone or DHT administration, resulting in hormonal profiles resembling levels observed in young males in terms of both amplitude and circadian pattern. This stimulatory effect was limited to DHEAS, as an increase in circulating cortisol was not observed. Taken together, these data demonstrate an influence of the hypothalamo-pituitary-testicular axis on adrenal function in males, possibly by sensitizing the zona reticularis to the stimulating action of adrenocorticopic hormone. This represents a plausible mechanism to explain sex differences in circulating DHEA and DHEAS levels, and may have important implications in the development of hormone therapies designed for elderly men and women.

Keywords: adrenal gland; aging; androgen; dehydroepiandrosterone; non-human primate; testosterone

References

  1. Eur J Endocrinol. 1998 May;138(5):567-73 - PubMed
  2. Neurobiol Aging. 2012 Jul;33(7):1487.e1-13 - PubMed
  3. Biol Reprod. 2008 Jul;79(1):93-9 - PubMed
  4. J Clin Endocrinol Metab. 2001 Feb;86(2):724-31 - PubMed
  5. Dev Psychopathol. 2010 Winter;22(1):45-53 - PubMed
  6. J Clin Endocrinol Metab. 2002 Feb;87(2):589-98 - PubMed
  7. J Clin Endocrinol Metab. 2005 Jul;90(7):4357-61 - PubMed
  8. J Clin Endocrinol Metab. 2002 Jan;87(1):166-75 - PubMed
  9. Int Psychogeriatr. 2013 Aug;25(8):1307-15 - PubMed
  10. J Clin Endocrinol Metab. 2005 May;90(5):2610-7 - PubMed
  11. Gynecol Endocrinol. 2000 Oct;14(5):342-63 - PubMed
  12. J Neuroendocrinol. 2013 Nov;25(11):1062-9 - PubMed
  13. Appl Physiol Nutr Metab. 2008 Jun;33(3):429-33 - PubMed
  14. Obstet Gynecol Clin North Am. 2011 Sep;38(3):467-75 - PubMed
  15. J Am Geriatr Soc. 2010 Sep;58(9):1707-14 - PubMed
  16. Neurology. 2000 Sep 26;55(6):872-4 - PubMed
  17. Semin Reprod Med. 2004 Nov;22(4):349-60 - PubMed
  18. Clin Endocrinol (Oxf). 1994 May;40(5):595-601 - PubMed
  19. Rev Endocr Metab Disord. 2009 Mar;10(1):33-42 - PubMed
  20. Neurobiol Aging. 2008 Sep;29(9):1412-22 - PubMed
  21. Steroids. 1998 May-Jun;63(5-6):322-8 - PubMed
  22. Ann N Y Acad Sci. 2005 Dec;1055:80-92 - PubMed
  23. Gynecol Endocrinol. 2006 Nov;22(11):627-35 - PubMed
  24. Mol Cell Endocrinol. 2007 Feb;265-266:93-101 - PubMed
  25. Am J Obstet Gynecol. 1993 Dec;169(6):1536-9 - PubMed
  26. Maturitas. 1995 Feb;21(2):103-13 - PubMed
  27. Menopause. 2013 Mar;20(3):322-8 - PubMed
  28. J Clin Endocrinol Metab. 2001 Oct;86(10):4686-92 - PubMed
  29. JAMA. 2008 Jan 2;299(1):39-52 - PubMed
  30. Curr Opin Psychiatry. 2012 Nov;25(6):445-50 - PubMed
  31. J Clin Endocrinol Metab. 1992 Oct;75(4):1002-4 - PubMed
  32. Gynecol Endocrinol. 2005 Mar;20(3):144-9 - PubMed
  33. Behav Neurosci. 2012 Feb;126(1):123-7 - PubMed
  34. J Clin Endocrinol Metab. 2005 Dec;90(12):6630-7 - PubMed
  35. Prog Brain Res. 2010;182:97-148 - PubMed
  36. Clin Endocrinol (Oxf). 1995 Oct;43(4):415-21 - PubMed
  37. Brain Res Brain Res Rev. 1999 Nov;30(3):264-88 - PubMed
  38. Depress Anxiety. 2011 May;28(5):383-92 - PubMed
  39. J Androl. 2006 Jan-Feb;27(1):72-8 - PubMed
  40. J Endocrinol. 2009 May;201(2):275-85 - PubMed
  41. Acta Obstet Gynecol Scand. 1999 Aug;78(7):642-7 - PubMed
  42. Menopause. 2012 Jun;19(6):658-63 - PubMed
  43. Rejuvenation Res. 2012 Apr;15(2):128-31 - PubMed
  44. Biol Psychol. 2012 May;90(2):143-9 - PubMed
  45. Behav Neurosci. 1994 Apr;108(2):325-32 - PubMed
  46. Fertil Steril. 2004 Jan;81(1):126-31 - PubMed
  47. J Clin Endocrinol Metab. 1997 Jul;82(7):2363-7 - PubMed
  48. Am J Clin Nutr. 2009 May;89(5):1459-67 - PubMed
  49. Curr Opin Endocrinol Diabetes Obes. 2009 Jun;16(3):224-31 - PubMed
  50. Rejuvenation Res. 2014 Apr;17(2):150-3 - PubMed
  51. Am J Physiol Regul Integr Comp Physiol. 2009 Aug;297(2):R515-23 - PubMed
  52. J Cogn Neurosci. 2000 May;12(3):407-14 - PubMed
  53. Mol Cell Endocrinol. 1991 Jul;78(3):C113-8 - PubMed
  54. J Am Geriatr Soc. 2008 Jul;56(7):1292-8 - PubMed
  55. Osteoporos Int. 2008 May;19(5):699-707 - PubMed
  56. Psychoneuroendocrinology. 1998 Aug;23(6):617-29 - PubMed

Publication Types

Grant support