Display options
Share it on

Sci Rep. 2014 Jul 17;4:5727. doi: 10.1038/srep05727.

Mirror-symmetric magneto-optical Kerr rotation using visible light in [(GeTe)2(Sb2Te3)1]n topological superlattices.

Scientific reports

Do Bang, Hiroyuki Awano, Junji Tominaga, Alexander V Kolobov, Paul Fons, Yuta Saito, Kotaro Makino, Takashi Nakano, Muneaki Hase, Yukihiko Takagaki, Alessandro Giussani, Raffaella Calarco, Shuichi Murakami

Affiliations

  1. Information Storage Materials Laboratory, Toyota Technological Institute, Nagoya, Japan.
  2. Nanoelectronics Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan.
  3. Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Japan.
  4. Paul-Drude-Institut für Festkörperelektronik, Berlin, Germany.
  5. Department of Physics, TIES, Tokyo Institute of Technology, Tokyo, Japan.

PMID: 25030304 PMCID: PMC4101470 DOI: 10.1038/srep05727

Abstract

Interfacial phase change memory (iPCM), that has a structure of a superlattice made of alternating atomically thin GeTe and Sb2Te3 layers, has recently attracted attention not only due to its superior performance compared to the alloy of the same average composition in terms of energy consumption but also due to its strong response to an external magnetic field (giant magnetoresistance) that has been speculated to arise from switching between topological insulator (RESET) and normal insulator (SET) phases. Here we report magneto-optical Kerr rotation loops in the visible range, that have mirror symmetric resonances with respect to the magnetic field polarity at temperatures above 380 K when the material is in the SET phase that has Kramers-pairs in spin-split bands. We further found that this threshold temperature may be controlled if the sample was cooled in a magnetic field. The observed results open new possibilities for use of iPCM beyond phase-change memory applications.

References

  1. Phys Rev Lett. 2010 Jul 30;105(5):057401 - PubMed
  2. Nature. 2008 Apr 24;452(7190):970-4 - PubMed
  3. Phys Rev Lett. 2009 Oct 2;103(14):146401 - PubMed
  4. Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):671-4 - PubMed
  5. Phys Rev B Condens Matter. 1990 Apr 15;41(11):7892-7895 - PubMed
  6. Sci Rep. 2014 Jan 23;4:3841 - PubMed
  7. Nat Nanotechnol. 2011 Jul 03;6(8):501-5 - PubMed
  8. Nature. 2010 Mar 11;464(7286):194-8 - PubMed
  9. Phys Rev Lett. 2012 Aug 31;109(9):096802 - PubMed
  10. Science. 2010 Aug 6;329(5992):659-62 - PubMed
  11. Phys Rev Lett. 2013 May 3;110(18):186807 - PubMed
  12. Sci Rep. 2013;3:1261 - PubMed
  13. Phys Rev Lett. 2010 Oct 22;105(17):176401 - PubMed
  14. Nature. 2009 Aug 27;460(7259):1101-5 - PubMed
  15. Nat Mater. 2014 Apr;13(4):345-51 - PubMed
  16. Science. 2006 Dec 15;314(5806):1757-61 - PubMed
  17. Nat Commun. 2013;4:2944 - PubMed
  18. Nat Mater. 2011 Mar;10(3):202-8 - PubMed

Publication Types