Display options
Share it on

Front Microbiol. 2014 Aug 01;5:373. doi: 10.3389/fmicb.2014.00373. eCollection 2014.

Comparative analysis of Salmonella susceptibility and tolerance to the biocide chlorhexidine identifies a complex cellular defense network.

Frontiers in microbiology

Orla Condell, Karen A Power, Kristian Händler, Sarah Finn, Aine Sheridan, Kjell Sergeant, Jenny Renaut, Catherine M Burgess, Jay C D Hinton, Jarlath E Nally, Séamus Fanning

Affiliations

  1. UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin Belfield, Dublin, Ireland ; European Program for Public Health Microbiology Training, European Centre for Disease Prevention and Control Stockholm, Sweden.
  2. UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin Belfield, Dublin, Ireland.
  3. Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin Dublin, Ireland.
  4. Food Safety Department, Teagasc Food Research Centre Ashtown, Dublin, Ireland.
  5. Department of Environment and Agrobiotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann Belvaux, Luxembourg.
  6. Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin Dublin, Ireland ; Institute of Integrative Biology, University of Liverpool Liverpool, UK.
  7. School of Veterinary Medicine, University College Dublin Belfield, Dublin, Ireland.
  8. UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin Belfield, Dublin, Ireland ; Institute for Global Food Security, Queen's University Belfast Belfast, Northern Ireland.

PMID: 25136333 PMCID: PMC4117984 DOI: 10.3389/fmicb.2014.00373

Abstract

Chlorhexidine is one of the most widely used biocides in health and agricultural settings as well as in the modern food industry. It is a cationic biocide of the biguanide class. Details of its mechanism of action are largely unknown. The frequent use of chlorhexidine has been questioned recently, amidst concerns that an overuse of this compound may select for bacteria displaying an altered susceptibility to antimicrobials, including clinically important anti-bacterial agents. We generated a Salmonella enterica serovar Typhimurium isolate (ST24(CHX)) that exhibited a high-level tolerant phenotype to chlorhexidine, following several rounds of in vitro selection, using sub-lethal concentrations of the biocide. This mutant showed altered suceptibility to a panel of clinically important antimicrobial compounds. Here we describe a genomic, transcriptomic, proteomic, and phenotypic analysis of the chlorhexidine tolerant S. Typhimurium compared with its isogenic sensitive progenitor. Results from this study describe a chlorhexidine defense network that functions in both the reference chlorhexidine sensitive isolate and the tolerant mutant. The defense network involved multiple cell targets including those associated with the synthesis and modification of the cell wall, the SOS response, virulence, and a shift in cellular metabolism toward anoxic pathways, some of which were regulated by CreB and Fur. In addition, results indicated that chlorhexidine tolerance was associated with more extensive modifications of the same cellular processes involved in this proposed network, as well as a divergent defense response involving the up-regulation of additional targets such as the flagellar apparatus and an altered cellular phosphate metabolism. These data show that sub-lethal concentrations of chlorhexidine induce distinct changes in exposed Salmonella, and our findings provide insights into the mechanisms of action and tolerance to this biocidal agent.

Keywords: SNP typing; Salmonella; biocide tolerance; chlorhexidine; proteomics; transcriptomics; whole genome sequencing

References

  1. J Hosp Infect. 1986 Jul;8(1):39-46 - PubMed
  2. Mol Microbiol. 2000 Mar;35(6):1518-29 - PubMed
  3. Infect Immun. 2007 Feb;75(2):766-73 - PubMed
  4. Proc Natl Acad Sci U S A. 2012 May 15;109(20):E1277-86 - PubMed
  5. Chemotherapy. 1997 Sep-Oct;43(5):323-31 - PubMed
  6. Antimicrob Agents Chemother. 1984 Aug;26(2):250-5 - PubMed
  7. Genome Res. 2008 Nov;18(11):1851-8 - PubMed
  8. Microbios. 1979;24(97-98):141-50 - PubMed
  9. Clin Microbiol Rev. 1999 Jan;12(1):147-79 - PubMed
  10. Periodontol 2000. 1997 Oct;15:55-62 - PubMed
  11. J Hosp Infect. 2002 Jul;51(3):201-6 - PubMed
  12. Phytochemistry. 2011 Jul;72(10):1243-50 - PubMed
  13. Biochem Biophys Res Commun. 2009 Mar 6;380(2):338-42 - PubMed
  14. J Bacteriol. 1988 Sep;170(9):4299-303 - PubMed
  15. Microbiology (Reading). 2009 Jul;155(Pt 7):2429-2441 - PubMed
  16. Antimicrob Agents Chemother. 1982 Feb;21(2):310-9 - PubMed
  17. J Appl Microbiol. 2002;92 Suppl:65S-71S - PubMed
  18. Int J Biol Sci. 2008 Sep 23;4(6):338-44 - PubMed
  19. Antimicrob Agents Chemother. 2005 May;49(5):1857-64 - PubMed
  20. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3776-81 - PubMed
  21. Clin Infect Dis. 2008 Jan 15;46(2):274-81 - PubMed
  22. J Bacteriol. 2008 Jun;190(11):3930-9 - PubMed
  23. J Biol Chem. 2001 Jul 20;276(29):26955-61 - PubMed
  24. J Biol Chem. 2010 Oct 22;285(43):33529-33539 - PubMed
  25. J Proteomics. 2012 Jul 19;75(14):4505-19 - PubMed
  26. Biol Proced Online. 2003;5:189-196 - PubMed
  27. Antimicrob Agents Chemother. 2004 May;48(5):1461-8 - PubMed
  28. J Clin Microbiol. 2004 Jan;42(1):73-8 - PubMed
  29. Pediatr Infect Dis J. 2000 Oct;19(10 Suppl):S120-2 - PubMed
  30. Clin Microbiol Infect. 2004 Jan;10(1):12-26 - PubMed
  31. Nature. 2000 Jul 13;406(6792):145-6 - PubMed
  32. J Bacteriol. 1999 Oct;181(20):6223-9 - PubMed
  33. Infection. 1986 Sep-Oct;14(5):212-5 - PubMed
  34. Appl Environ Microbiol. 2012 May;78(9):3087-97 - PubMed
  35. FEMS Microbiol Lett. 1994 Jun 1;119(1-2):249-53 - PubMed
  36. J Mol Microbiol Biotechnol. 2001 Apr;3(2):163-70 - PubMed
  37. J Biol Chem. 1991 Jan 5;266(1):130-5 - PubMed
  38. Immunol Cell Biol. 2007 Feb-Mar;85(2):112-8 - PubMed
  39. J Bacteriol. 2002 Mar;184(5):1253-61 - PubMed
  40. Int J Antimicrob Agents. 2006 Aug;28(2):143-6 - PubMed
  41. Mol Microbiol. 2011 Jan;79(2):375-86 - PubMed
  42. J Appl Microbiol. 2005;99(4):703-15 - PubMed
  43. BMC Vet Res. 2009 May 27;5:20 - PubMed
  44. Infect Immun. 2006 Feb;74(2):1243-54 - PubMed
  45. J Proteomics. 2011 Aug 12;74(8):1385-95 - PubMed
  46. Int J Antimicrob Agents. 2000 Nov;16(3):233-8 - PubMed
  47. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7708-11 - PubMed
  48. Trends Pharmacol Sci. 2006 Nov;27(11):587-93 - PubMed
  49. BMC Microbiol. 2011 Oct 21;11:236 - PubMed
  50. Int Endod J. 2007 Nov;40(11):837-44 - PubMed
  51. PLoS Genet. 2008 Aug 22;4(8):e1000163 - PubMed
  52. Bioinformatics. 2007 Oct 15;23(20):2700-7 - PubMed
  53. Arch Microbiol. 1997 Feb-Mar;167(2-3):78-88 - PubMed
  54. FEMS Microbiol Lett. 2008 Dec;289(2):219-24 - PubMed
  55. Microbiology (Reading). 2008 Oct;154(Pt 10):3144-3153 - PubMed
  56. J Appl Microbiol. 2002;92 Suppl:35S-45S - PubMed
  57. Proteomics. 2005 Jan;5(1):144-52 - PubMed
  58. Bull Environ Contam Toxicol. 2005 Nov;75(5):835-44 - PubMed
  59. PLoS One. 2010 Nov 08;5(11):e13871 - PubMed
  60. Antimicrob Agents Chemother. 2008 Jul;52(7):2428-34 - PubMed
  61. J Proteomics. 2013 Mar 27;80:78-90 - PubMed
  62. Antimicrob Agents Chemother. 2001 Apr;45(4):1126-36 - PubMed
  63. Symp Ser Soc Appl Microbiol. 2002;(31):55S-64S - PubMed
  64. PLoS Genet. 2012 Jan;8(1):e1002459 - PubMed
  65. Microbiol Mol Biol Rev. 2000 Dec;64(4):694-708 - PubMed
  66. Microbiology (Reading). 2006 Apr;152(Pt 4):989-1000 - PubMed
  67. Poult Sci. 1998 Dec;77(12):1759-62 - PubMed
  68. J Food Prot. 2007 Dec;70(12):2725-31 - PubMed
  69. Microbiol Rev. 1996 Dec;60(4):575-608 - PubMed
  70. J Antimicrob Chemother. 2008 Oct;62(4):730-7 - PubMed
  71. J Antimicrob Chemother. 2009 Jan;63(1):95-102 - PubMed
  72. PLoS One. 2012;7(5):e36659 - PubMed
  73. Appl Environ Microbiol. 2003 Feb;69(2):1075-81 - PubMed
  74. Methods. 2003 Dec;31(4):265-73 - PubMed
  75. Appl Environ Microbiol. 2013 Jul;79(14):4376-84 - PubMed
  76. J Bacteriol. 2003 May;185(10):3111-7 - PubMed
  77. J Bacteriol. 1999 Oct;181(19):5967-75 - PubMed
  78. Antimicrob Agents Chemother. 2009 Mar;53(3):1080-7 - PubMed
  79. Environ Sci Technol. 2009 Nov 1;43(21):8406-15 - PubMed
  80. J Appl Bacteriol. 1980 Apr;48(2):223-30 - PubMed

Publication Types