Display options
Share it on

PLoS One. 2014 Jul 31;9(7):e101524. doi: 10.1371/journal.pone.0101524. eCollection 2014.

Evaluating contextual processing in diffusion MRI: application to optic radiation reconstruction for epilepsy surgery.

PloS one

Chantal M W Tax, Remco Duits, Anna Vilanova, Bart M ter Haar Romeny, Paul Hofman, Louis Wagner, Alexander Leemans, Pauly Ossenblok

Affiliations

  1. Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands.
  2. Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands.
  3. Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
  4. Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands.
  5. Department of Function and Medical Technology, Epilepsy Center Kempenhaeghe, Heeze, The Netherlands.
  6. Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
  7. Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Function and Medical Technology, Epilepsy Center Kempenhaeghe, Heeze, The Netherlands.

PMID: 25077946 PMCID: PMC4117467 DOI: 10.1371/journal.pone.0101524

Abstract

Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning.

References

  1. Magn Reson Med. 2004 Jan;51(1):103-14 - PubMed
  2. Epilepsia. 2008 Aug;49(8):1317-23 - PubMed
  3. J Vis. 2008 Jul 29;8(9):15.1-16 - PubMed
  4. IEEE Trans Med Imaging. 2009 Feb;28(2):269-86 - PubMed
  5. Neuroimage. 2008 Jan 1;39(1):119-26 - PubMed
  6. Ann Neurol. 2012 Mar;71(3):334-41 - PubMed
  7. Brain. 2009 Jun;132(Pt 6):1656-68 - PubMed
  8. Neuroimage. 2007 May 1;35(4):1459-72 - PubMed
  9. AJNR Am J Neuroradiol. 2007 Jun-Jul;28(6):1107-13 - PubMed
  10. Med Image Comput Comput Assist Interv. 2008;11(Pt 1):9-16 - PubMed
  11. Neural Comput. 2012 Dec;24(12):3277-316 - PubMed
  12. Int J Radiat Oncol Biol Phys. 2012 Feb 1;82(2):799-802 - PubMed
  13. J Vis. 2008 Dec 17;8(10):12.1-11 - PubMed
  14. Neurosurgery. 2006 Feb;58(2):331-7; discussion 331-7 - PubMed
  15. Am J Ophthalmol. 2005 Nov;140(5):781-785 - PubMed
  16. Acta Neurochir (Wien). 1988;92(1-4):29-36 - PubMed
  17. Doc Ophthalmol. 1994;88(1):77-88 - PubMed
  18. Epilepsy Res. 2007 Oct;77(1):11-6 - PubMed
  19. IEEE Trans Med Imaging. 2008 Sep;27(9):1268-74 - PubMed
  20. N Engl J Med. 2001 Aug 2;345(5):311-8 - PubMed
  21. Neurology. 2005 Aug 23;65(4):596-9 - PubMed
  22. Neurosurgery. 2010 Dec;67(2 Suppl Operative):385-90 - PubMed
  23. IEEE Trans Pattern Anal Mach Intell. 2013 Apr;35(4):983-95 - PubMed
  24. Eye (Lond). 2002 Nov;16(6):744-8 - PubMed
  25. Curr Opin Ophthalmol. 2009 Nov;20(6):490-4 - PubMed
  26. AJNR Am J Neuroradiol. 2007 Jan;28(1):92-6 - PubMed
  27. Magn Reson Med. 2004 Apr;51(4):807-15 - PubMed
  28. NMR Biomed. 2010 Aug;23(7):803-20 - PubMed
  29. J Physiol Paris. 2012 Sep-Dec;106(5-6):183-93 - PubMed
  30. J Neurosurg. 2010 Apr;112(4):814-23 - PubMed
  31. Arch Ophthalmol. 1991 Jun;109(6):816-24 - PubMed
  32. Hum Brain Mapp. 2011 Mar;32(3):461-79 - PubMed
  33. Br J Ophthalmol. 2000 Aug;84(8):884-9 - PubMed
  34. J Neurol Neurosurg Psychiatry. 1963 Apr;26(2):154-65 - PubMed
  35. Acta Neurol Scand. 2004 Nov;110(5):301-7 - PubMed
  36. Magn Reson Med. 2009 Jun;61(6):1336-49 - PubMed
  37. Neuroimage. 2014 Feb 1;86:67-80 - PubMed
  38. Neurology. 1999 Jul 13;53(1):167-72 - PubMed
  39. AJNR Am J Neuroradiol. 2008 Aug;29(7):1329-34 - PubMed
  40. J Magn Reson Imaging. 2012 Jul;36(1):237-48 - PubMed
  41. Neuroimage. 2009 Apr 1;45(2):286-97 - PubMed
  42. IEEE Trans Biomed Eng. 2007 Mar;54(3):462-72 - PubMed
  43. Hum Brain Mapp. 2010 Jan;31(1):98-114 - PubMed
  44. Ann N Y Acad Sci. 2005 Dec;1064:1-15 - PubMed

MeSH terms

Publication Types