Display options
Share it on

Sci Rep. 2014 Aug 20;4:6131. doi: 10.1038/srep06131.

Temperature-dependent photoluminescence in light-emitting diodes.

Scientific reports

Taiping Lu, Ziguang Ma, Chunhua Du, Yutao Fang, Haiyan Wu, Yang Jiang, Lu Wang, Longgui Dai, Haiqiang Jia, Wuming Liu, Hong Chen

Affiliations

  1. Key Laboratory for Renewable Energy, Chinese Academy of Sciences; Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

PMID: 25139682 PMCID: PMC5381404 DOI: 10.1038/srep06131

Abstract

Temperature-dependent photoluminescence (TDPL), one of the most effective and powerful optical characterisation methods, is widely used to investigate carrier transport and localized states in semiconductor materials. Resonant excitation and non-resonant excitation are the two primary methods of researching this issue. In this study, the application ranges of the different excitation modes are confirmed by analysing the TDPL characteristics of GaN-based light-emitting diodes. For resonant excitation, the carriers are generated only in the quantum wells, and the TDPL features effectively reflect the intrinsic photoluminescence characteristics within the wells and offer certain advantages in characterising localized states and the quality of the wells. For non-resonant excitation, both the wells and barriers are excited, and the carriers that drift from the barriers can contribute to the luminescence under the driving force of the built-in field, which causes the existing equations to become inapplicable. Thus, non-resonant excitation is more suitable than resonant excitation for studying carrier transport dynamics and evaluating the internal quantum efficiency. The experimental technique described herein provides fundamental new insights into the selection of the most appropriate excitation mode for the experimental analysis of carrier transport and localized states in p-n junction devices.

References

  1. Nature. 2009 Jun 4;459(7247):686-9 - PubMed
  2. Nat Nanotechnol. 2010 Dec;5(12):878-84 - PubMed
  3. Nature. 2004 Nov 11;432(7014):197-200 - PubMed
  4. Nature. 2011 Jun 29;474(7353):627-30 - PubMed
  5. Phys Rev Lett. 2009 Jun 12;102(23):235501 - PubMed
  6. Phys Rev Lett. 2004 Sep 24;93(13):137401 - PubMed
  7. Nature. 2000 Aug 24;406(6798):865-8 - PubMed
  8. Nat Mater. 2006 Oct;5(10):810-6 - PubMed
  9. Phys Rev Lett. 2004 Mar 12;92(10):106802 - PubMed
  10. Adv Mater. 2011 Dec 1;23(45):5364-9 - PubMed
  11. Nat Mater. 2011 Oct 23;10(12):936-41 - PubMed
  12. Nat Mater. 2004 Sep;3(9):601-5 - PubMed
  13. Nature. 2002 Aug 15;418(6899):754-7 - PubMed
  14. Phys Rev Lett. 1990 Sep 3;65(10):1247-1250 - PubMed
  15. Phys Rev Lett. 1990 Sep 24;65(13):1631-1634 - PubMed
  16. Phys Rev Lett. 1991 Aug 12;67(7):887-890 - PubMed
  17. Phys Rev Lett. 2009 Jun 19;102(24):247401 - PubMed
  18. Phys Rev Lett. 1991 Mar 11;66(10):1362-1365 - PubMed
  19. Phys Rev Lett. 1987 May 18;58(20):2130-2133 - PubMed
  20. Sci Rep. 2013 Dec 17;3:3389 - PubMed
  21. Nat Nanotechnol. 2008 Mar;3(3):174-8 - PubMed
  22. Science. 2010 Jan 1;327(5961):60-4 - PubMed

Publication Types