Display options
Share it on

J Periodontal Implant Sci. 2014 Oct;44(5):242-50. doi: 10.5051/jpis.2014.44.5.242. Epub 2014 Oct 29.

Early bone healing onto implant surface treated by fibronectin/oxysterol for cell adhesion/osteogenic differentiation: in vivo experimental study in dogs.

Journal of periodontal & implant science

Jung-Seok Lee, Jin-Hyuk Yang, Ji-Youn Hong, Ui-Won Jung, Hyeong-Cheol Yang, In-Seop Lee, Seong-Ho Choi

Affiliations

  1. Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea.
  2. Department of Periodontology, Kyung Hee University School of Dentistry, Seoul, Korea.
  3. Department of Dental Biomaterials Science, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea.
  4. Atomic-Scale Surface Science Research Center, Yonsei University, Seoul, Korea.

PMID: 25368813 PMCID: PMC4216401 DOI: 10.5051/jpis.2014.44.5.242

Abstract

PURPOSE: This study aimed to evaluate the effects of fibronectin and oxysterol immobilized on machined-surface dental implants for the enhancement of cell attachment and osteogenic differentiation, on peri-implant bone healing in the early healing phase using an experimental model in dogs.

METHODS: Five types of dental implants were installed at a healed alveolar ridge in five dogs: a machined-surface implant (MI), apatite-coated MI (AMI), fibronectin-loaded AMI (FAMI), oxysterol-loaded AMI (OAMI), and sand-blasted, large-grit, acid-etched surface implant (SLAI). A randomly selected unilateral ridge was observed for 2 weeks, and the contralateral ridge for a 4-week period. Histologic and histometric analyses were performed for the bone-to-implant contact proportion (BIC) and bone density around the dental implant surface.

RESULTS: Different bone healing patterns were observed according to the type of implant surface 2 weeks after installation; newly formed bone continuously lined the entire surfaces in specimens of the FAMI and SLAI groups, whereas bony trabecula from adjacent bone tissue appeared with minimal new bone lining onto the surface in the MI, AMI, and OAMI groups. Histometric results revealed a significant reduction in the BIC in MI, AMI, and OAMI compared to SLAI, but FAMI demonstrated a comparable BIC with SLAI. Although both the BIC and bone density increased from a 2- to 4-week healing period, bone density showed no significant difference among any of the experimental and control groups.

CONCLUSIONS: A fibronectin-coated implant surface designed for cell adhesion could increase contact osteogenesis in the early bone healing phase, but an oxysterol-coated implant surface designed for osteoinductivity could not modify early bone healing around implants in normal bone physiology.

Keywords: Cell adhesion; Dental implants; Fibronectins; Surface properties; Titanium

References

  1. J Biomed Mater Res. 1991 Jul;25(7):889-902 - PubMed
  2. Bone. 2009 Jul;45(1):17-26 - PubMed
  3. Acta Orthop Scand. 1981;52(2):155-70 - PubMed
  4. Int J Oral Maxillofac Implants. 1998 Nov-Dec;13(6):805-10 - PubMed
  5. J Prosthet Dent. 2000 Nov;84(5):522-34 - PubMed
  6. J Dent Res. 2013 Oct;92(10):853-9 - PubMed
  7. J Dent Educ. 2003 Aug;67(8):932-49 - PubMed
  8. J Biomed Mater Res. 2002 May;60(2):325-32 - PubMed
  9. J Biomed Mater Res. 1999 May;45(2):75-83 - PubMed
  10. J Biomed Mater Res. 1998 Apr;40(1):1-11 - PubMed
  11. Int J Oral Maxillofac Implants. 2000 Sep-Oct;15(5):675-90 - PubMed
  12. Biomaterials. 2008 May;29(13):2025-32 - PubMed
  13. J Periodontal Implant Sci. 2011 Oct;41(5):242-7 - PubMed
  14. J Biomed Mater Res A. 2007 Sep 1;82(3):658-68 - PubMed
  15. Tissue Eng Part A. 2013 Sep;19(17-18):1994-2004 - PubMed
  16. Eur J Med Res. 2007 Jan 31;12(1):6-12 - PubMed
  17. Clin Oral Implants Res. 1994 Dec;5(4):202-6 - PubMed
  18. Biomed Mater. 2010 Aug;5(4):044107 - PubMed
  19. Cochrane Database Syst Rev. 2007 Oct 17;(4):CD003815 - PubMed
  20. J Oral Maxillofac Surg. 2012 Aug;70(8):1827-34 - PubMed
  21. Clin Oral Implants Res. 2002 Apr;13(2):144-53 - PubMed
  22. J Clin Periodontol. 2008 Nov;35(11):1001-10 - PubMed
  23. Acta Biomater. 2010 Jun;6(6):2274-81 - PubMed
  24. Bioorg Med Chem Lett. 2012 Sep 15;22(18):5893-7 - PubMed
  25. Nat Rev Mol Cell Biol. 2010 Sep;11(9):633-43 - PubMed
  26. Alpha Omegan. 1992;85(4):61-4 - PubMed
  27. Int J Prosthodont. 1998 Sep-Oct;11(5):391-401 - PubMed
  28. J Biomed Mater Res A. 2010 Apr;93(1):289-96 - PubMed
  29. Biomaterials. 2001 Oct;22(19):2671-82 - PubMed
  30. Clin Oral Implants Res. 2008 Oct;19(10 ):1027-33 - PubMed
  31. Cell. 1992 Apr 3;69(1):11-25 - PubMed
  32. Dent Mater. 2007 Jul;23(7):844-54 - PubMed
  33. Int J Oral Maxillofac Implants. 1993;8(5):573-9 - PubMed
  34. J Cell Biochem. 2011 Jun;112(6):1673-84 - PubMed
  35. Clin Oral Implants Res. 2004 Aug;15(4):381-92 - PubMed
  36. Clin Oral Implants Res. 2000;11 Suppl 1:22-32 - PubMed
  37. Tissue Eng Part A. 2011 May;17(9-10):1389-99 - PubMed
  38. J Orthop Res. 2007 Nov;25(11):1488-97 - PubMed
  39. J Cell Biochem. 2008 Oct 1;105(2):424-36 - PubMed
  40. J Bone Miner Res. 2004 May;19(5):830-40 - PubMed

Publication Types