Display options
Share it on

Front Oncol. 2014 Oct 20;4:286. doi: 10.3389/fonc.2014.00286. eCollection 2014.

Evidence of differential effects of vitamin d receptor variants on epithelial ovarian cancer risk by predicted vitamin d status.

Frontiers in oncology

Jennifer Prescott, Kimberly A Bertrand, Brett M Reid, Jennifer Permuth-Wey, Immaculata De Vivo, Daniel W Cramer, Kathryn L Terry, Shelley S Tworoger

Affiliations

  1. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, MA , USA ; Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health , Boston, MA , USA.
  2. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, MA , USA ; Department of Epidemiology, Harvard School of Public Health , Boston, MA , USA.
  3. Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL , USA.
  4. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, MA , USA ; Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health , Boston, MA , USA ; Department of Epidemiology, Harvard School of Public Health , Boston, MA , USA.
  5. Department of Epidemiology, Harvard School of Public Health , Boston, MA , USA ; Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School , Boston, MA , USA.

PMID: 25368842 PMCID: PMC4202710 DOI: 10.3389/fonc.2014.00286

Abstract

INTRODUCTION: Experimental studies suggest vitamin D inhibits ovarian carcinogenesis. Yet, epidemiologic studies of ovarian cancer risk and lifestyle correlates of vitamin D status, plasma 25-hydroxyvitamin D [25(OH)D], or vitamin D receptor (VDR) variants have been inconsistent.

OBJECTIVE: To evaluate VDR genetic associations by high vs. low predicted 25(OH)D, scores derived from known determinants of plasma 25(OH)D. To assess ovarian cancer associations with variants identified in genome-wide association studies (GWAS) of plasma 25(OH)D.

METHODS: We genotyped up to seven VDR and eight 25(OH)D GWAS variants in the Nurses' Health Studies (562 cases, 1,553 controls) and New England Case-Control study (1,821 cases, 1,870 controls). We estimated haplotype scores using expectation-maximization-based algorithms. We used unconditional logistic regression to calculate odds ratios (ORs) and 95% confidence intervals (CI). We combined study results using DerSimonian and Laird meta-analysis.

RESULTS: Ovarian cancer risk increased per A allele of rs7975232 (VDR; OR = 1.12, 95% CI = 1.01-1.25) among all women. When stratified by predicted 25(OH)D, ovarian cancer was associated with rs731236 (VDR; per C allele OR = 1.31) and rs7975232 (OR = 1.38) among women with high predicted 25(OH)D, but not among women with low levels (P ≤ 0.009). We also observed heterogeneity by predicted 25(OH)D for the ovarian cancer association with VDR 3' end haplotypes (P = 0.009). Of 25(OH)D-associated GWAS loci, rs7041 was associated with reduced ovarian cancer risk (per T allele OR = 0.92, 95% CI = 0.85-0.99), which did not differ by predicted 25(OH)D status.

CONCLUSION: Our study suggests an influence of VDR 3' end variants on ovarian cancer risk may be observed in women with high predicted 25(OH)D, which remained even after taking multiple comparisons into consideration. Future studies are needed to confirm our results and explore further the relation between vitamin D exposure, genetic variants, and ovarian cancer risk.

Keywords: haplotype; heterogeneity; ovarian cancer; polymorphism; vitamin D

References

  1. Carcinogenesis. 2009 May;30(5):769-76 - PubMed
  2. Gynecol Oncol. 1992 Feb;44(2):131-6 - PubMed
  3. Anticancer Res. 2002 Jul-Aug;22(4):2261-7 - PubMed
  4. Cancer Lett. 2007 Mar 18;247(2):328-35 - PubMed
  5. Control Clin Trials. 1986 Sep;7(3):177-88 - PubMed
  6. Int J Cancer. 2013 Mar 1;132(5):1114-24 - PubMed
  7. Methods Enzymol. 1997;282:174-86 - PubMed
  8. Int J Epidemiol. 1994 Dec;23(6):1133-6 - PubMed
  9. Br J Nutr. 2012 Nov 28;108(10):1889-96 - PubMed
  10. Gene. 2004 Sep 1;338(2):143-56 - PubMed
  11. Nutr Rev. 2008 Oct;66(10 Suppl 2):S153-64 - PubMed
  12. Recent Results Cancer Res. 2003;164:239-46 - PubMed
  13. Dermatoendocrinol. 2010 Apr;2(2):68-76 - PubMed
  14. Am J Prev Med. 2006 Dec;31(6):512-4 - PubMed
  15. Am J Epidemiol. 2010 Jul 1;172(1):70-80 - PubMed
  16. J Steroid Biochem Mol Biol. 2010 Jul;121(1-2):387-90 - PubMed
  17. Hum Genet. 2012 Sep;131(9):1495-505 - PubMed
  18. Anticancer Drugs. 1993 Apr;4(2):201-8 - PubMed
  19. Eur J Cancer. 2010 Oct;46(15):2799-805 - PubMed
  20. J Biol Chem. 2004 Dec 17;279(51):53213-21 - PubMed
  21. Cancers (Basel). 2013 Nov 22;5(4):1577-600 - PubMed
  22. Int J Cancer. 2012 Sep 15;131(6):E1015-23 - PubMed
  23. Anticancer Res. 2006 Jul-Aug;26(4A):2605-14 - PubMed
  24. Oncology. 2002;63(2):151-7 - PubMed
  25. Cancer Prev Res (Phila). 2012 Nov;5(11):1330-6 - PubMed
  26. Invest New Drugs. 2010 Oct;28(5):543-53 - PubMed
  27. Cancer Epidemiol Biomarkers Prev. 2006 Feb;15(2):364-72 - PubMed
  28. Hum Hered. 2002;53(2):79-91 - PubMed
  29. Behav Brain Res. 2001 Nov 1;125(1-2):279-84 - PubMed
  30. Nat Genet. 2010 Oct;42(10):874-9 - PubMed
  31. Clin Endocrinol (Oxf). 2000 Feb;52(2):211-6 - PubMed
  32. Arch Intern Med. 2009 Mar 23;169(6):626-32 - PubMed
  33. Cancer Chemother Pharmacol. 2006 Jan;57(2):234-40 - PubMed
  34. Nat Genet. 2009 Sep;41(9):996-1000 - PubMed
  35. Nutr Cancer. 2006;56(1):22-30 - PubMed
  36. Ann Oncol. 2001 Nov;12(11):1589-93 - PubMed
  37. Cancer Causes Control. 2012 Dec;23(12):1985-94 - PubMed
  38. Nat Genet. 2013 Apr;45(4):362-70, 370e1-2 - PubMed
  39. Nat Genet. 2010 Oct;42(10):880-4 - PubMed
  40. Cancer Res. 2009 Mar 1;69(5):1885-91 - PubMed
  41. Cancer Epidemiol. 2011 Dec;35(6):e105-10 - PubMed
  42. Am J Epidemiol. 1999 Jan 1;149(1):21-31 - PubMed
  43. J Cell Biochem Suppl. 1995;23:200-7 - PubMed
  44. Am J Epidemiol. 2007 Dec 15;166(12):1409-19 - PubMed
  45. Hum Mol Genet. 2010 Jul 1;19(13):2739-45 - PubMed
  46. Am J Epidemiol. 2002 Jul 15;156(2):148-57 - PubMed
  47. Prostate. 2007 Jun 15;67(9):911-23 - PubMed
  48. Prostate. 2005 Aug 1;64(3):272-82 - PubMed
  49. Am J Epidemiol. 2005 Mar 1;161(5):442-51 - PubMed
  50. J Steroid Biochem Mol Biol. 2007 Mar;103(3-5):668-74 - PubMed
  51. Int J Cancer. 2000 Apr 1;86(1):40-6 - PubMed
  52. J Biol Chem. 2004 Jun 11;279(24):25260-7 - PubMed
  53. Int J Cancer. 2012 Aug 15;131(4):E518-29 - PubMed
  54. Am J Clin Nutr. 1997 Apr;65(4 Suppl):1220S-1228S; discussion 1229S-1231S - PubMed
  55. Genes Cancer. 2013 Nov;4(11-12):524-34 - PubMed
  56. Genet Epidemiol. 2005 Apr;28(3):261-72 - PubMed
  57. Nucleic Acids Res. 2008 Jan;36(1):121-32 - PubMed
  58. N Engl J Med. 1982 Mar 25;306(12):722-5 - PubMed
  59. Hum Genet. 1986 Apr;72(4):281-93 - PubMed
  60. Lancet. 2010 Jul 17;376(9736):180-8 - PubMed
  61. Tumour Biol. 2013 Dec;34(6):3309-16 - PubMed
  62. PLoS One. 2013 Jun 24;8(6):e66716 - PubMed
  63. Hum Genet. 1993 Sep;92(2):183-8 - PubMed
  64. Eur J Cancer. 2010 Jan;46(2):364-9 - PubMed

Publication Types

Grant support