Display options
Share it on

J Biomed Sci Eng. 2013 Feb;6(2):192-200. doi: 10.4236/jbise.2013.62023.

Diffusion tensor tractography of the arcuate fasciculus in patients with brain tumors: Comparison between deterministic and probabilistic models.

Journal of biomedical science and engineering

Zhixi Li, Kyung K Peck, Nicole P Brennan, Mehrnaz Jenabi, Meier Hsu, Zhigang Zhang, Andrei I Holodny, Robert J Young

Affiliations

  1. Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA.
  2. Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA ; Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, USA.
  3. Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA.
  4. Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA ; Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, USA.

PMID: 25328583 PMCID: PMC4199232 DOI: 10.4236/jbise.2013.62023

Abstract

PURPOSE: The purpose of this study was to compare the deterministic and probabilistic tracking methods of diffusion tensor white matter fiber tractography in patients with brain tumors.

MATERIALS AND METHODS: We identified 29 patients with left brain tumors <2 cm from the arcuate fasciculus who underwent pre-operative language fMRI and DTI. The arcuate fasciculus was reconstructed using a deterministic Fiber Assignment by Continuous Tracking (FACT) algorithm and a probabilistic method based on an extended Monte Carlo Random Walk algorithm. Tracking was controlled using two ROIs corresponding to Broca's and Wernicke's areas. Tracts in tumoraffected hemispheres were examined for extension between Broca's and Wernicke's areas, anterior-posterior length and volume, and compared with the normal contralateral tracts.

RESULTS: Probabilistic tracts displayed more complete anterior extension to Broca's area than did FACT tracts on the tumor-affected and normal sides (p < 0.0001). The median length ratio for tumor: normal sides was greater for probabilistic tracts than FACT tracts (p < 0.0001). The median tract volume ratio for tumor: normal sides was also greater for probabilistic tracts than FACT tracts (p = 0.01).

CONCLUSION: Probabilistic tractography reconstructs the arcuate fasciculus more completely and performs better through areas of tumor and/or edema. The FACT algorithm tends to underestimate the anterior-most fibers of the arcuate fasciculus, which are crossed by primary motor fibers.

Keywords: Arcuate Fasciculus; Brain Tumors; DTI; Diffusion Tensor Imaging; FACT; Probabilistic; Tractography

References

  1. Int J Radiat Oncol Biol Phys. 2012 Apr 1;82(5):2033-40 - PubMed
  2. AJNR Am J Neuroradiol. 2004 Mar;25(3):356-69 - PubMed
  3. Brain. 2009 Sep;132(Pt 9):2309-16 - PubMed
  4. Radiology. 1989 Jan;170(1 Pt 1):211-7 - PubMed
  5. Neuroimage. 2003 Aug;19(4):1349-60 - PubMed
  6. Brain. 2006 Jul;129(Pt 7):1859-71 - PubMed
  7. Invest Radiol. 1999 Mar;34(3):225-9 - PubMed
  8. Neurosurgery. 1996 Sep;39(3):515-20; discussion 520-1 - PubMed
  9. Neuroimage. 2006 May 1;30(4):1219-29 - PubMed
  10. Neurosurgery. 2005;56(1):130-7; discussion 138 - PubMed
  11. Radiology. 1986 Nov;161(2):401-7 - PubMed
  12. AJNR Am J Neuroradiol. 2008 Feb;29(2):379-83 - PubMed
  13. Neuron. 2003 Dec 4;40(5):885-95 - PubMed
  14. Cortex. 2004 Feb;40(1):213-5 - PubMed
  15. Br J Neurosurg. 1991;5(6):647-9 - PubMed
  16. Radiology. 2006 Sep;240(3):849-57 - PubMed
  17. Radiology. 1990 Aug;176(2):439-45 - PubMed
  18. Biophys J. 1994 Jan;66(1):259-67 - PubMed
  19. Clin Radiol. 2003 Jun;58(6):455-62 - PubMed
  20. Neurosurg Clin N Am. 1996 Apr;7(2):313-22 - PubMed
  21. Magn Reson Imaging. 2010 Feb;28(2):217-25 - PubMed
  22. Magn Reson Med. 2002 Feb;47(2):215-23 - PubMed
  23. Neuroimage. 2005 Apr 1;25(2):424-9 - PubMed
  24. Nat Neurosci. 2008 Apr;11(4):426-8 - PubMed
  25. Clin Breast Cancer. 2008 Feb;8(1):88-91 - PubMed
  26. Magn Reson Med. 2001 May;45(5):770-80 - PubMed
  27. Eur J Radiol. 2005 Nov;56(2):197-204 - PubMed
  28. Cereb Cortex. 2008 Nov;18(11):2471-82 - PubMed
  29. Magn Reson Med. 2003 Nov;50(5):1077-88 - PubMed
  30. Neuroreport. 2005 May 31;16(8):791-4 - PubMed
  31. Science. 1970 Nov 27;170(3961):940-4 - PubMed
  32. NMR Biomed. 2002 Nov-Dec;15(7-8):468-80 - PubMed
  33. AJNR Am J Neuroradiol. 2008 Mar;29(3):483-7 - PubMed
  34. J Neurosurg. 1961 Sep;18:636-44 - PubMed
  35. Neuroimage. 2005 Feb 1;24(3):656-66 - PubMed
  36. Lancet Neurol. 2008 Aug;7(8):715-27 - PubMed
  37. J Neurol Neurosurg Psychiatry. 2000 Apr;68(4):501-3 - PubMed
  38. Neuroimage. 2008 Oct 15;43(1):81-9 - PubMed
  39. Neurology. 2007 Mar 6;68(10):789 - PubMed
  40. J Neurosurg. 2010 Jul;113(1):156-7; author reply 157-8 - PubMed
  41. Neuroimage. 2003 Jul;19(3):545-54 - PubMed
  42. Neuro Oncol. 2006 Jul;8(3):244-52 - PubMed
  43. Cancer Invest. 2007 Dec;25(8):706-10 - PubMed
  44. Magn Reson Med. 2000 Oct;44(4):625-32 - PubMed
  45. Ann Neurol. 2005 Jan;57(1):8-16 - PubMed
  46. Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):18035-40 - PubMed
  47. J Neurosurg. 2007 Sep;107(3):488-94 - PubMed
  48. Stroke. 2011 Aug;42(8):2251-6 - PubMed
  49. J Neurosurg. 2004 Jul;101(1):66-72 - PubMed
  50. J Magn Reson Imaging. 2003 Aug;18(2):242-54 - PubMed
  51. Ann Neurol. 1999 Feb;45(2):265-9 - PubMed

Publication Types

Grant support