Display options
Share it on

Front Microbiol. 2014 Dec 23;5:708. doi: 10.3389/fmicb.2014.00708. eCollection 2014.

Chaophilic or chaotolerant fungi: a new category of extremophiles?.

Frontiers in microbiology

Janja Zajc, Sašo Džeroski, Dragi Kocev, Aharon Oren, Silva Sonjak, Rok Tkavc, Nina Gunde-Cimerman

Affiliations

  1. Department of Biology, Biotechnical Faculty, University of Ljubljana Ljubljana, Slovenia.
  2. Department of Knowledge Technologies, Jožef Stefan Institute Ljubljana, Slovenia ; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP) Ljubljana, Slovenia.
  3. Department of Knowledge Technologies, Jožef Stefan Institute Ljubljana, Slovenia.
  4. Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel.
  5. Department of Biology, Biotechnical Faculty, University of Ljubljana Ljubljana, Slovenia ; Department of Pathology, Uniformed Services University of the Health Sciences Bethesda, MD, USA.
  6. Department of Biology, Biotechnical Faculty, University of Ljubljana Ljubljana, Slovenia ; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP) Ljubljana, Slovenia.

PMID: 25566222 PMCID: PMC4274975 DOI: 10.3389/fmicb.2014.00708

Abstract

It is well known that few halophilic bacteria and archaea as well as certain fungi can grow at the highest concentrations of NaCl. However, data about possible life at extremely high concentrations of various others kosmotropic (stabilizing; like NaCl, KCl, and MgSO4) and chaotropic (destabilizing) salts (NaBr, MgCl2, and CaCl2) are scarce for prokaryotes and almost absent for the eukaryotic domain including fungi. Fungi from diverse (extreme) environments were tested for their ability to grow at the highest concentrations of kosmotropic and chaotropic salts ever recorded to support life. The majority of fungi showed preference for relatively high concentrations of kosmotropes. However, our study revealed the outstanding tolerance of several fungi to high concentrations of MgCl2 (up to 2.1 M) or CaCl2 (up to 2.0 M) without compensating kosmotropic salts. Few species, for instance Hortaea werneckii, Eurotium amstelodami, Eurotium chevalieri and Wallemia ichthyophaga, are able to thrive in media with the highest salinities of all salts (except for CaCl2 in the case of W. ichthyophaga). The upper concentration of MgCl2 to support fungal life in the absence of kosmotropes (2.1 M) is much higher than previously determined to be the upper limit for microbial growth (1.26 M). No fungal representatives showed exclusive preference for only chaotropic salts (being obligate chaophiles). Nevertheless, our study expands the knowledge of possible active life by a diverse set of fungi in biologically detrimental chaotropic environments.

Keywords: calcium chloride; chaotropes; halophiles; kosmotropes; life limit; magnesium chloride; xerophiles

References

  1. Med Mycol. 2005 Jun;43(4):327-33 - PubMed
  2. Appl Microbiol. 1971 Aug;22(2):210-3 - PubMed
  3. Microbiology. 2007 Dec;153(Pt 12):4261-73 - PubMed
  4. FEMS Microbiol Ecol. 2010 Jan;71(1):2-11 - PubMed
  5. Environ Microbiol. 2015 Feb;17(2):496-513 - PubMed
  6. Appl Environ Microbiol. 2010 Jan;76(1):329-37 - PubMed
  7. FEBS Lett. 2009 Dec 17;583(24):4025-9 - PubMed
  8. Folia Microbiol (Praha). 1978;23(1):37-44 - PubMed
  9. BMC Genomics. 2014 Jul 01;15:549 - PubMed
  10. FEMS Microbiol Ecol. 2005 Jan 1;51(2):155-66 - PubMed
  11. Science. 2005 Jan 7;307(5706):121-3 - PubMed
  12. FEMS Microbiol Ecol. 2000 Jun 1;32(3):235-240 - PubMed
  13. EMBO Rep. 2004 May;5(5):470-6 - PubMed
  14. Mol Biol Cell. 2005 Apr;16(4):2068-76 - PubMed
  15. Mycol Res. 2006 Jun;110(Pt 6):713-24 - PubMed
  16. Microbiol Mol Biol Rev. 2010 Mar;74(1):95-120 - PubMed
  17. Curr Opin Chem Biol. 2006 Dec;10(6):658-63 - PubMed
  18. Microb Ecol. 2006 Aug;52(2):207-16 - PubMed
  19. Mycol Res. 2006 Aug;110(Pt 8):962-70 - PubMed
  20. Environ Microbiol. 2009 Dec;11(12):3292-308 - PubMed
  21. Antonie Van Leeuwenhoek. 2005 May;87(4):311-28 - PubMed
  22. Environ Microbiol. 2007 Mar;9(3):801-13 - PubMed
  23. Appl Environ Microbiol. 2014 Jan;80(1):247-56 - PubMed
  24. Appl Environ Microbiol. 2005 Nov;71(11):6600-5 - PubMed
  25. BMC Genomics. 2013 Sep 13;14:617 - PubMed
  26. Adv Appl Microbiol. 2011;77:71-96 - PubMed
  27. PLoS One. 2013 Aug 15;8(8):e71328 - PubMed
  28. FEMS Microbiol Rev. 2006 Sep;30(5):806-24 - PubMed
  29. Arch Microbiol. 1975 Aug 28;104(3):207-14 - PubMed
  30. EMBO J. 1995 Apr 3;14(7):1360-71 - PubMed
  31. FEMS Microbiol Lett. 2006 Dec;265(1):41-50 - PubMed
  32. Int J Syst Bacteriol. 1995 Oct;45(4):747-54 - PubMed
  33. FEMS Microbiol Lett. 2005 Mar 15;244(2):229-34 - PubMed
  34. Stud Mycol. 2007;58:157-83 - PubMed
  35. Environ Microbiol. 2015 Feb;17(2):257-77 - PubMed
  36. J Ind Microbiol Biotechnol. 2002 Jan;28(1):56-63 - PubMed
  37. J Gen Microbiol. 1977 Jul;101(1):35-40 - PubMed
  38. FEMS Microbiol Ecol. 2011 Jul;77(1):186-99 - PubMed

Publication Types