Display options
Share it on

Microbiol Insights. 2014 Nov 11;7:25-34. doi: 10.4137/MBI.S18076. eCollection 2014.

Evaluative profiling of arsenic sensing and regulatory systems in the human microbiome project genomes.

Microbiology insights

Raphael D Isokpehi, Udensi K Udensi, Shaneka S Simmons, Antoinesha L Hollman, Antia E Cain, Samson A Olofinsae, Oluwabukola A Hassan, Zainab A Kashim, Ojochenemi A Enejoh, Deborah E Fasesan, Oyekanmi Nashiru

Affiliations

  1. Department of Biology, Bethune-Cookman University, Daytona Beach, FL, USA.
  2. RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA.
  3. Department of Biology, Jackson State University, Jackson, MS, USA. ; Department of Computer Science, Jackson State University, Jackson, MS, USA.
  4. Jarvis Christian College, Hawkins, TX, USA.
  5. Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
  6. H3Africa Bioinformatics Network Node, National Biotechnology Development Agency (NABDA), Abuja, Nigeria.

PMID: 25452698 PMCID: PMC4230230 DOI: 10.4137/MBI.S18076

Abstract

The influence of environmental chemicals including arsenic, a type 1 carcinogen, on the composition and function of the human-associated microbiota is of significance in human health and disease. We have developed a suite of bioinformatics and visual analytics methods to evaluate the availability (presence or absence) and abundance of functional annotations in a microbial genome for seven Pfam protein families: As(III)-responsive transcriptional repressor (ArsR), anion-transporting ATPase (ArsA), arsenical pump membrane protein (ArsB), arsenate reductase (ArsC), arsenical resistance operon transacting repressor (ArsD), water/glycerol transport protein (aquaporins), and universal stress protein (USP). These genes encode function for sensing and/or regulating arsenic content in the bacterial cell. The evaluative profiling strategy was applied to 3,274 genomes from which 62 genomes from 18 genera were identified to contain genes for the seven protein families. Our list included 12 genomes in the Human Microbiome Project (HMP) from the following genera: Citrobacter, Escherichia, Lactobacillus, Providencia, Rhodococcus, and Staphylococcus. Gene neighborhood analysis of the arsenic resistance operon in the genome of Bacteroides thetaiotaomicron VPI-5482, a human gut symbiont, revealed the adjacent arrangement of genes for arsenite binding/transfer (ArsD) and cytochrome c biosynthesis (DsbD_2). Visual analytics facilitated evaluation of protein annotations in 367 genomes in the phylum Bacteroidetes identified multiple genomes in which genes for ArsD and DsbD_2 were adjacently arranged. Cytochrome c, produced by a posttranslational process, consists of heme-containing proteins important for cellular energy production and signaling. Further research is desired to elucidate arsenic resistance and arsenic-mediated cellular energy production in the Bacteroidetes.

Keywords: Bacteroides; Bacteroidetes; Human Microbiome Project; arsenate; arsenic; arsenite; bioinformatics; genomes; gut microbiota; heavy metal transport; human symbiont; mercuric transport; secondary data analysis; visual analytics

References

  1. Adv Appl Bioinform Chem. 2013 May 10;6:15-27 - PubMed
  2. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1128-33 - PubMed
  3. J Clin Microbiol. 1995 Jan;33(1):242-5 - PubMed
  4. J Biol Chem. 1997 May 30;272(22):14257-62 - PubMed
  5. Antimicrob Agents Chemother. 1982 Nov;22(5):889-92 - PubMed
  6. Appl Environ Microbiol. 1995 Nov;61(11):4124-7 - PubMed
  7. Bioinform Biol Insights. 2011 Feb 07;5:41-58 - PubMed
  8. Microbiol Mol Biol Rev. 2010 Sep;74(3):453-76 - PubMed
  9. J Bacteriol. 2007 Mar;189(6):2283-90 - PubMed
  10. Chem Res Toxicol. 2014 Feb 17;27(2):172-4 - PubMed
  11. Nature. 2013 Aug 29;500(7464):541-6 - PubMed
  12. Scientifica (Cairo). 2013;2013:505714 - PubMed
  13. Nucleic Acids Res. 2013 Jan;41(Database issue):D358-65 - PubMed
  14. Environ Sci Pollut Res Int. 2014 Jan;21(1):609-19 - PubMed
  15. IUBMB Life. 2013 Mar;65(3):209-16 - PubMed
  16. Nature. 2012 Jun 13;486(7402):207-14 - PubMed
  17. J Biol Chem. 2007 Jun 8;282(23 ):16783-91 - PubMed
  18. Science. 2003 Mar 28;299(5615):2074-6 - PubMed
  19. J Bacteriol. 2005 Sep;187(18):6265-72 - PubMed
  20. Nature. 2007 Oct 18;449(7164):804-10 - PubMed
  21. Science. 2010 May 21;328(5981):994-9 - PubMed
  22. Int J Microbiol. 2010;2010:187373 - PubMed
  23. PLoS One. 2014 Mar 14;9(3):e92236 - PubMed
  24. J Bacteriol. 2005 Oct;187(20):6991-7 - PubMed
  25. J Hazard Mater. 2013 Nov 15;262:1237-44 - PubMed
  26. BMC Genomics. 2010 Dec 17;11:709 - PubMed
  27. J Ind Microbiol Biotechnol. 2012 Jan;39(1):37-44 - PubMed
  28. J Bacteriol. 1995 Apr;177(8):2050-6 - PubMed
  29. Nucleic Acids Res. 2014 Jan;42(Database issue):D459-71 - PubMed
  30. Bioinform Biol Insights. 2012;6:275-86 - PubMed
  31. J Antimicrob Chemother. 2010 Jun;65(6):1162-70 - PubMed
  32. Cancer Epidemiol Biomarkers Prev. 2014 Jul;23(7):1187-94 - PubMed
  33. Mol Microbiol. 2011 Feb;79(4):872-81 - PubMed
  34. Curr Opin Microbiol. 2003 Apr;6(2):140-5 - PubMed
  35. Nucleic Acids Res. 2012 Jan;40(Database issue):D115-22 - PubMed
  36. Am J Clin Nutr. 2013 Jul;98(1):16-24 - PubMed
  37. Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15 - PubMed
  38. Bioinformatics. 2003 Jan 22;19(2):295-6 - PubMed
  39. Bioessays. 2003 Oct;25(10):926-9 - PubMed
  40. Curr Opin Chem Biol. 2013 Jun;17(3):379-84 - PubMed
  41. Int J Environ Res Public Health. 2010 May;7(5):1970-83 - PubMed
  42. Plant Physiol. 2000 Nov;124(3):1327-34 - PubMed
  43. Environ Health Perspect. 2010 Jul;118(7):1004-9 - PubMed
  44. BMC Plant Biol. 2014 Apr 16;14:94 - PubMed
  45. Appl Environ Microbiol. 2009 Aug;75(15):5064-73 - PubMed

Publication Types

Grant support