Display options
Share it on

Alzheimers Res Ther. 2014 Oct 20;6(5):56. doi: 10.1186/s13195-014-0056-3. eCollection 2014.

Association between cell-bound blood amyloid-β(1-40) levels and hippocampus volume.

Alzheimer's research & therapy

Oscar Sotolongo-Grau, Pedro Pesini, Sergi Valero, Asunción Lafuente, Mar Buendía, Virginia Pérez-Grijalba, Itziar San José, Marta Ibarria, Miguel A Tejero, Joan Giménez, Isabel Hernández, Lluís Tárraga, Agustín Ruiz, Mercé Boada, Manuel Sarasa

Affiliations

  1. Alzheimer Research Center and Memory Clinic, Fundació ACE Memory Clinic, Institut Català de Neurociències Aplicades, Marquès de Sentmenat, 57, Barcelona, 08029, Spain.
  2. Araclon Biotech Ltd, Via Hispanidad 21, Zaragoza, 50009, Spain.
  3. Alzheimer Research Center and Memory Clinic, Fundació ACE Memory Clinic, Institut Català de Neurociències Aplicades, Marquès de Sentmenat, 57, Barcelona, 08029, Spain ; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona, 08035, Spain.
  4. Department of Diagnostic Imaging, Clínica Corachan, Buïgas, 19, Barcelona, 08017, Spain.

PMID: 25484928 PMCID: PMC4255526 DOI: 10.1186/s13195-014-0056-3

Abstract

INTRODUCTION: The identification of early, preferably presymptomatic, biomarkers and true etiologic factors for Alzheimer's disease (AD) is the first step toward establishing effective primary and secondary prevention programs. Consequently, the search for a relatively inexpensive and harmless biomarker for AD continues. Despite intensive research worldwide, to date there is no definitive plasma or blood biomarker indicating high or low risk of conversion to AD.

METHODS: Magnetic resonance imaging and β-amyloid (Aβ) levels in three blood compartments (diluted in plasma, undiluted in plasma and cell-bound) were measured in 96 subjects (33 with mild cognitive impairment, 14 with AD and 49 healthy controls). Pearson correlations were completed between 113 regions of interest (ROIs) (45 subcortical and 68 cortical) and Aβ levels. Pearson correlation analyses adjusted for the covariates age, sex, apolipoprotein E (ApoE), education and creatinine levels showed neuroimaging ROIs were associated with Aβ levels. Two statistical methods were applied to study the major relationships identified: (1) Pearson correlation with phenotype added as a covariate and (2) a meta-analysis stratified by phenotype. Neuroimaging data and plasma Aβ measurements were taken from 630 Alzheimer's Disease Neuroimaging Initiative (ADNI) subjects to be compared with our results.

RESULTS: The left hippocampus was the brain region most correlated with Aβ(1-40) bound to blood cell pellets (partial correlation (pcor) = -0.37, P = 0.0007) after adjustment for the covariates age, gender and education, ApoE and creatinine levels. The correlation remained almost the same (pcor = -0.35, P = 0.002) if phenotype is also added as a covariate. The association between both measurements was independent of cognitive status. The left hemisphere entorhinal cortex also correlated with Aβ(1-40) cell-bound fraction. AB128 and ADNI plasma Aβ measurements were not related to any brain morphometric measurement.

CONCLUSIONS: Association of cell-bound Aβ(1-40) in blood with left hippocampal volume was much stronger than previously observed in Aβ plasma fractions. If confirmed, this observation will require careful interpretation and must be taken into account for blood amyloid-based biomarker development.

References

  1. J Clin Exp Neuropsychol. 2012;34(2):209-19 - PubMed
  2. Int J Alzheimers Dis. 2012;2012:604141 - PubMed
  3. J Alzheimers Dis. 2013;36(1):211-9 - PubMed
  4. Arch Neurol. 2000 Jan;57(1):100-5 - PubMed
  5. PLoS One. 2013 Nov 27;8(11):e81334 - PubMed
  6. GMS Health Technol Assess. 2013 Apr 11;9:Doc01 - PubMed
  7. Ann Neurol. 2004 Apr;55(4):570-5 - PubMed
  8. Alzheimer Dis Assoc Disord. 2013 Jul-Sep;27(3):244-9 - PubMed
  9. J Neurol Neurosurg Psychiatry. 2010 Oct;81(10):1123-7 - PubMed
  10. Arch Neurol. 1999 Mar;56(3):303-8 - PubMed
  11. Neurology. 2002 Mar 12;58(5):695-701 - PubMed
  12. Neuroimage. 2006 Aug 1;32(1):180-94 - PubMed
  13. Arch Neurol. 2005 Jul;62(7):1160-3; discussion 1167 - PubMed
  14. Alzheimer Dis Assoc Disord. 2002 Jul-Sep;16(3):187-90 - PubMed
  15. Arch Gen Psychiatry. 2003 Sep;60(9):878-88 - PubMed
  16. Alzheimers Res Ther. 2013 Mar 08;5(2):8 - PubMed
  17. Neuropsychologia. 2001;39(11):1150-7 - PubMed
  18. Lancet Neurol. 2007 Aug;6(8):734-46 - PubMed
  19. Brain. 2009 Apr;132(Pt 4):1067-77 - PubMed
  20. Curr Alzheimer Res. 2012 Dec;9(10 ):1142-8 - PubMed
  21. Neurology. 2003 Nov 11;61(9):1185-90 - PubMed
  22. Alzheimers Dement. 2014 Jan;10 (1):53-61 - PubMed
  23. Acta Neuropathol. 2011 Oct;122(4):401-13 - PubMed
  24. Neurobiol Dis. 2005 Jun-Jul;19(1-2):28-37 - PubMed
  25. Cereb Cortex. 2004 Jul;14(7):721-30 - PubMed
  26. Alzheimers Dement. 2012 Jul;8(4):250-60 - PubMed
  27. Neurology. 1984 Jul;34(7):939-44 - PubMed
  28. Neuroimage. 2012 Jul 16;61(4):1402-18 - PubMed
  29. Alzheimers Dement. 2012 Feb;8(1 Suppl):S1-68 - PubMed

Publication Types