Display options
Share it on

Comput Biol Chem. 2014 Dec;53:242-250. doi: 10.1016/j.compbiolchem.2014.09.006. Epub 2014 Sep 21.

Metabolic network motifs can provide novel insights into evolution: The evolutionary origin of Eukaryotic organelles as a case study.

Computational biology and chemistry

Erin R Shellman, Yu Chen, Xiaoxia Lin, Charles F Burant, Santiago Schnell

Affiliations

  1. Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA.
  2. Department of Chemical Engineering, University of Michigan School of Engineering, Ann Arbor, MI, USA.
  3. Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA. Electronic address: [email protected].
  4. Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA. Electronic address: [email protected].

PMID: 25462333 PMCID: PMC4254655 DOI: 10.1016/j.compbiolchem.2014.09.006

Abstract

Phylogenetic trees are typically constructed using genetic and genomic data, and provide robust evolutionary relationships of species from the genomic point of view. We present an application of network motif mining and analysis of metabolic pathways that when used in combination with phylogenetic trees can provide a more complete picture of evolution. By using distributions of three-node motifs as a proxy for metabolic similarity, we analyze the ancestral origin of Eukaryotic organelles from the metabolic point of view to illustrate the application of our motif mining and analysis network approach. Our analysis suggests that the hypothesis of an early proto-Eukaryote could be valid. It also suggests that a δ- or ϵ-Proteobacteria may have been the endosymbiotic partner that gave rise to modern mitochondria. Our evolutionary analysis needs to be extended by building metabolic network reconstructions of species from the phylum Crenarchaeota, which is considered to be a possible archaeal ancestor of the eukaryotic cell. In this paper, we also propose a methodology for constructing phylogenetic trees that incorporates metabolic network signatures to identify regions of genomically-estimated phylogenies that may be spurious. We find that results generated from our approach are consistent with a parallel phylogenetic analysis using the method of feature frequency profiles.

Copyright © 2014 Elsevier Ltd. All rights reserved.

Keywords: Enzyme classification; Eukaryotic cell; Evolution; Metabolism; Network motifs; Phylogenies

References

  1. FEBS Lett. 2009 Dec 3;583(23):3738-45 - PubMed
  2. Science. 2002 Oct 25;298(5594):824-7 - PubMed
  3. Nature. 1998 Mar 5;392(6671):37-41 - PubMed
  4. Mol Syst Biol. 2009;5:320 - PubMed
  5. Bioessays. 2007 Jan;29(1):74-84 - PubMed
  6. Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2677-82 - PubMed
  7. J Mol Evol. 1998 Nov;47(5):517-30 - PubMed
  8. J Theor Biol. 2006 Aug 21;241(4):823-9 - PubMed
  9. Nature. 1998 Nov 12;396(6707):133-40 - PubMed
  10. Eur J Biochem. 2003 Apr;270(8):1599-618 - PubMed
  11. Mol Biosyst. 2013 Sep;9(9):2189-200 - PubMed
  12. Science. 2004 Apr 9;304(5668):253-7 - PubMed
  13. Trends Microbiol. 2005 Nov;13(11):550-8 - PubMed
  14. Nature. 2013 Dec 12;504(7479):231-6 - PubMed
  15. Mol Biol Evol. 2004 Sep;21(9):1643-60 - PubMed
  16. Ann N Y Acad Sci. 1969 Dec 19;168(2):369-81 - PubMed
  17. Mol Biol Evol. 2006 Apr;23(4):838-45 - PubMed
  18. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10320-5 - PubMed
  19. Curr Biol. 2004 Jul 13;14(13):R514-6 - PubMed
  20. Mol Phylogenet Evol. 2000 Sep;16(3):317-30 - PubMed
  21. Brief Bioinform. 2014 Jan;15(1):79-90 - PubMed
  22. Mol Biosyst. 2013 Mar;9(3):352-60 - PubMed
  23. Nature. 1999 May 27;399(6734):323-9 - PubMed
  24. Science. 2004 Mar 5;303(5663):1538-42 - PubMed
  25. Trends Genet. 1998 Nov;14(11):442-4 - PubMed
  26. Bioinformatics. 2006 May 1;22(9):1152-3 - PubMed
  27. Nature. 2007 Jun 21;447(7147):913 - PubMed
  28. Nat Rev Microbiol. 2011 Jun 13;9(7):543-55 - PubMed
  29. Nat Rev Microbiol. 2005 Sep;3(9):679-87 - PubMed
  30. Nat Protoc. 2007;2(3):727-38 - PubMed
  31. Nat Rev Genet. 2007 May;8(5):395-403 - PubMed
  32. Nature. 1989 May 11;339(6220):l00-1 - PubMed
  33. Nat Biotechnol. 2010 Jun;28(6):567-72 - PubMed

Publication Types

Grant support