Display options
Share it on

Ann Clin Transl Neurol. 2014 Oct;1(10):799-812. doi: 10.1002/acn3.119. Epub 2014 Oct 01.

Hyperglycemia- and neuropathy-induced changes in mitochondria within sensory nerves.

Annals of clinical and translational neurology

Hussein S Hamid, Colin M Mervak, Alexandra E Münch, Nicholas J Robell, John M Hayes, Michael T Porzio, J Robinson Singleton, A Gordon Smith, Eva L Feldman, Stephen I Lentz

Affiliations

  1. University of Michigan Medical School, University of Michigan Ann Arbor, Michigan, 48109.
  2. Department of Neurology, University of Michigan Ann Arbor, Michigan, 48109.
  3. Division on Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Ann Arbor, Michigan, 48105.
  4. Department of Neurology, University of Utah School of Medicine Salt Lake City, Utah, 84132.

PMID: 25493271 PMCID: PMC4241807 DOI: 10.1002/acn3.119

Abstract

OBJECTIVE: This study focused on altered mitochondrial dynamics as a potential mechanism for diabetic peripheral neuropathy (DPN). We employed both an in vitro sensory neuron model and an in situ analysis of human intraepidermal nerve fibers (IENFs) from cutaneous biopsies to measure alterations in the size distribution of mitochondria as a result of hyperglycemia and diabetes, respectively.

METHODS: Neurite- and nerve-specific mitochondrial signals within cultured rodent sensory neurons and human IENFs were measured by employing a three-dimensional visualization and quantification technique. Skin biopsies from distal thigh (DT) and distal leg (DL) were analyzed from three groups of patients; patients with diabetes and no DPN, patients with diabetes and confirmed DPN, and healthy controls.

RESULTS: This analysis demonstrated an increase in mitochondria distributed within the neurites of cultured sensory neurons exposed to hyperglycemic conditions. Similar changes were observed within IENFs of the DT in DPN patients compared to controls. This change was represented by a significant shift in the size frequency distribution of mitochondria toward larger mitochondria volumes within DT nerves of DPN patients. There was a length-dependent difference in mitochondria within IENFs. Distal leg IENFs from control patients had a significant shift toward larger volumes of mitochondrial signal compared to DT IENFs.

INTERPRETATION: The results of this study support the hypothesis that altered mitochondrial dynamics may contribute to DPN pathogenesis. Future studies will examine the potential mechanisms that are responsible for mitochondrial changes within IENFs and its effect on DPN pathogenesis.

References

  1. J Peripher Nerv Syst. 2005 Jun;10 (2):202-8 - PubMed
  2. Neurology. 2009 Oct 6;73(14):1142-8 - PubMed
  3. Biosci Rep. 2007 Jun;27(1-3):87-104 - PubMed
  4. Brain. 2004 Jul;127(Pt 7):1606-15 - PubMed
  5. Neurology. 1995 Oct;45(10):1848-55 - PubMed
  6. Eur J Neurol. 2010 Jul;17(7):903-12, e44-9 - PubMed
  7. J Pain. 2013 Sep;14(9):941-7 - PubMed
  8. Pharmacol Ther. 2008 Oct;120(1):1-34 - PubMed
  9. Neurobiol Dis. 2013 Mar;51:56-65 - PubMed
  10. Exp Neurol. 2009 Aug;218(2):257-67 - PubMed
  11. Exp Neurol. 2009 Mar;216(1):207-18 - PubMed
  12. Curr Drug Targets. 2008 Jan;9(1):3-13 - PubMed
  13. Exp Neurol. 2011 Dec;232(2):154-61 - PubMed
  14. Mol Cell Neurosci. 2013 Jul;55:62-76 - PubMed
  15. Nat Clin Pract Neurol. 2006 Nov;2(11):620-8 - PubMed
  16. Neuroscience. 2013 May 15;238:258-69 - PubMed
  17. Exp Neurol. 2009 Aug;218(2):247-56 - PubMed
  18. J Bioenerg Biomembr. 2004 Aug;36(4):283-6 - PubMed
  19. FASEB J. 2004 Oct;18(13):1544-6 - PubMed
  20. Acta Neuropathol. 1991;82(6):471-82 - PubMed
  21. BMJ. 2007 Jun 2;334(7604):1159-62 - PubMed
  22. J Peripher Nerv Syst. 2001 Mar;6(1):21-7 - PubMed
  23. Neurology. 1996 Oct;47(4):1042-8 - PubMed
  24. Acta Neuropathol. 2007 Apr;113(4):431-42 - PubMed
  25. Pract Neurol. 2007 Apr;7(2):82-92 - PubMed
  26. Nat Rev Neurosci. 2012 Jan 05;13(2):77-93 - PubMed
  27. Acta Neuropathol. 2010 Oct;120(4):477-89 - PubMed
  28. Cell. 2008 Jan 11;132(1):137-48 - PubMed
  29. FASEB J. 2002 Nov;16(13):1738-48 - PubMed
  30. J Neurol Sci. 2005 Jan 15;228(1):65-9 - PubMed
  31. Neuroscientist. 2008 Feb;14(1):12-8 - PubMed
  32. J Cell Sci. 2005 Dec 1;118(Pt 23):5411-9 - PubMed
  33. Diabetologia. 2010 Jan;53(1):160-9 - PubMed
  34. Neurobiol Dis. 2006 Jul;23 (1):11-22 - PubMed
  35. Neurology. 2001 Nov 13;57(9):1701-4 - PubMed
  36. Nat Rev Neurosci. 2011 Jan;12(1):31-42 - PubMed
  37. Ann Neurol. 1998 Jul;44(1):47-59 - PubMed
  38. Exp Neurol. 2008 Dec;214(2):276-84 - PubMed
  39. Eur J Neurol. 2005 Oct;12(10):747-58 - PubMed
  40. J Neurosci. 2011 May 18;31(20):7249-58 - PubMed
  41. Biochim Biophys Acta. 2010 Jan;1802(1):135-42 - PubMed
  42. Nat Methods. 2007 Jul;4(7):559-61 - PubMed
  43. Neurology. 1999 Nov 10;53(8):1641-7 - PubMed
  44. J Peripher Nerv Syst. 2012 Jun;17(2):147-57 - PubMed
  45. Annu Rev Neurosci. 2008;31:151-73 - PubMed
  46. Biochim Biophys Acta. 2010 Jan;1802(1):62-5 - PubMed
  47. Neurotoxicology. 2013 Dec;39:124-31 - PubMed
  48. J Neurosci. 2011 Feb 2;31(5):1624-34 - PubMed
  49. Neurobiol Dis. 2007 Dec;28(3):276-85 - PubMed
  50. J Biophys Biochem Cytol. 1958 Sep 25;4(5):551-5 - PubMed
  51. Diabetes Care. 2006 Jun;29(6):1294-9 - PubMed
  52. FASEB J. 2005 Apr;19(6):638-40 - PubMed
  53. Neurology. 2003 Jan 14;60(1):108-11 - PubMed
  54. J Neurosci. 2006 Oct 11;26(41):10480-7 - PubMed
  55. Hum Mol Genet. 2009 Oct 15;18(R2):R169-76 - PubMed
  56. Trends Neurosci. 2012 Jun;35(6):364-72 - PubMed
  57. Expert Rev Endocrinol Metab. 2010 Jan 1;5(1):39-49 - PubMed
  58. Front Neural Circuits. 2013 Oct 01;7:153 - PubMed
  59. Neuron. 2011 Jun 23;70(6):1033-53 - PubMed

Publication Types

Grant support