Display options
Share it on

J Clin Exp Hepatol. 2013 Jun;3(2):89-95. doi: 10.1016/j.jceh.2013.04.003. Epub 2013 May 22.

Reduced Expression of DNA Damage Repair Genes High Mobility Group Box1 and Poly(ADP-ribose) Polymerase1 in Inactive Carriers of Hepatitis B Virus Infection-A Possible Stage of Viral Integration.

Journal of clinical and experimental hepatology

Rathindra M Mukherjee, Gelli V Shravanti, Aparna Jakkampudi, Ramya Kota, Asha L Jangala, Panyala B Reddy, Padaki N Rao, Rajesh Gupta, Duvvuru N Reddy

Affiliations

  1. Asian Health Care Foundation, Institute of Basic and Translational Research, 6-3-661, Somajiguda, Hyderabad 500082, India.
  2. Asian Institute of Gastroenterology, Somajiguda, Hyderabad, India.

PMID: 25755481 PMCID: PMC3940113 DOI: 10.1016/j.jceh.2013.04.003

Abstract

BACKGROUND: High mobility group box1 (HMGB1) and poly(ADP-ribose) polymerase1 (PARP1) proteins repair cellular DNA damage. Reduced expression of the corresponding genes can lead to an impaired DNA damage repair mechanism. Intracellular replication of hepatitis B virus (HBV) in such conditions can favor the integration of viral DNA into host genome leading to the development of hepatocellular carcinoma (HCC).

OBJECTIVE: This study was performed to assess the expression of HMGB1 and PARP1 mRNAs in conjunction with the estimation of HBV replication intermediate pregenomic RNA (PgRNA) in various phases of HBV infection.

MATERIALS: Eighty eight patients and 26 voluntary blood donors as controls were included in the study. Patients were grouped in to acute (AHB; n = 15), inactive carriers (IC; n = 36), cirrhosis (Cirr; n = 25) and hepatocellular carcinoma (HCC; n = 12). Serum HBV DNA was quantified by real time polymerase chain reaction (PCR) assay. Expression of HMGB1, PARP1 and PgRNA were evaluated using peripheral blood mononuclear cells (PBMCs) derived RNA by reverse transcription PCR (RT-PCR) and densitometry.

RESULTS: Significant reduction of HMGB1 and PARP1 gene expressions (P < 0.05) were observed in patients than controls with more explicit decline of PARP1 (P = 0.0002). Both genes were significantly downregulated (P < 0.001) in ICs than controls. In ICs, HMGB1 was significantly lowered than cirrhosis (P = 0.002) and HCC (P = 0.0006) while PARP1 declined significantly (P = 0.04) than HCC. Level of PgRNA was comparable in all the disease categories.

CONCLUSION: In conclusion, our findings indicate impaired DNA damage repair mechanisms in HBV infected cells of ICs. This, along with low viral load but higher level of PgRNA in this group is suggestive of the diversion of HBV replication pathway that might facilitate viral DNA integration in to host genome. Intrusion of HBV PgRNA reverse transcription in early stage of infection might appear advantageous to thwart the development of HCC.

Keywords: ADP, adenosine diphosphate; AHB, acute hepatitis B; ALT, alanine transferase; AST, aspartate transferase; BER, base excision repair; CHB, chronic HBV; CIRRH, cirrhosis; CP, Child–Pugh; DEPC, diethyl pyrocarbonate; DTT, dithiothreitol; ELISA, enzyme-linked immunosorbent assay; HAV, hepatitis A virus; HBV, hepatitis B virus; HBX, hepatitis B virus X protein; HBeAg, hepatitis B virus e antigen; HBsAg, hepatitis B virus surface antigen; HCC, hepatocellular carcinoma; HDV, hepatitis delta virus; HEV, hepatitis E virus; HIV, human immunodeficiency virus; HMGB1, high mobility group box1; IC, inactive carriers; IgG, immunoglobulin G; IgM, immunoglobulin M; MuLV-H, moloney murine leukemia virus Rnase H; NER, nucleotide excision repair; PARP1, poly(ADP-ribose) polymerase1; PBMCs, peripheral blood mononuclear cells; PCR, polymerase chain reaction; PgRNA, pregenomic RNA; RT-PCR, reverse transcription PCR; SD, standard deviation; UISs, unique integration sites; cccDNA, covalently closed circular DNA; dNTPs, deoxynucleoside triphosphates; dsDNA, double stranded HBV DNA; gene expression; hepatitis B virus; high mobility group box1; poly(ADP-ribose) polymerase1; pregenomic RNA; rcDNA, relaxed circular DNA

References

  1. J Leukoc Biol. 2008 Nov;84(5):1248-55 - PubMed
  2. J Biol Chem. 2004 May 14;279(20):20935-40 - PubMed
  3. Microbiol Mol Biol Rev. 2000 Mar;64(1):51-68 - PubMed
  4. World J Gastroenterol. 2005 Nov 7;11(41):6416-21 - PubMed
  5. J Hepatol. 2005;42 Suppl(1):S100-7 - PubMed
  6. Biochem J. 2005 Jul 15;389(Pt 2):423-33 - PubMed
  7. Virus Res. 2008 Jun;134(1-2):235-49 - PubMed
  8. Nat Genet. 1999 Jul;22(3):276-80 - PubMed
  9. Hepatology. 2002 Jan;35(1):217-23 - PubMed
  10. Hepatology. 2001 Dec;34(6):1225-41 - PubMed
  11. J Virol. 1999 Dec;73(12):9710-7 - PubMed
  12. Gastroenterology. 2010 Aug;139(2):483-90 - PubMed
  13. PLoS Genet. 2012;8(12):e1003065 - PubMed
  14. Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11135-40 - PubMed
  15. Gastroenterology. 2001 Jun;120(7):1828-53 - PubMed
  16. Mol Cell. 2007 Sep 7;27(5):829-41 - PubMed
  17. Hepatology. 2009 Sep;50(3):661-2 - PubMed
  18. J Clin Invest. 2012 Feb;122(2):529-37 - PubMed
  19. Mol Cell Biol. 2004 May;24(10):4321-8 - PubMed
  20. Eur J Biochem. 2000 Jul;267(13):4088-97 - PubMed
  21. J Med Virol. 2004 Feb;72(2):203-14 - PubMed
  22. Clin Liver Dis. 2007 Nov;11(4):685-706, vii - PubMed
  23. Gut. 2005 Aug;54(8):1162-8 - PubMed
  24. Gastroenterology. 2010 May;138(5):1747-54 - PubMed
  25. Exp Hematol. 2003 Jun;31(6):446-54 - PubMed
  26. Semin Cancer Biol. 2000 Jun;10(3):211-31 - PubMed
  27. Clin Gastroenterol Hepatol. 2007 Dec;5(12 ):1462-8 - PubMed
  28. J Clin Exp Hepatol. 2012 Mar;2(1):27-34 - PubMed
  29. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10320-5 - PubMed
  30. Mol Carcinog. 2009 Jul;48(7):571-80 - PubMed
  31. Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1139-44 - PubMed
  32. Hepatology. 2011 Oct;54(4):1190-8 - PubMed
  33. Gut. 2012 Mar;61(3):333-6 - PubMed
  34. Hepatology. 2005 Nov;42(5):1208-36 - PubMed
  35. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):310-5 - PubMed

Publication Types